
An Exact Algorithm for the
Elementary Shortest Path Problem with Resource Constraints:

Application to some Vehicle Routing Problems

Dominique Feillet1

Pierre Dejax2

Michel Gendreau3

Cyrille Gueguen4

1 Laboratoire d’Informatique d’Avignon
Université d’Avignon

339 Chemin des Meinajariés, BP 1228, 84911 Avignon Cedex 9, France
dominique.feillet@lia.univ-avignon.fr

2 Département automatique et Productique
Ecole des mines de Nantes

4, rue Alfred Kastler, BP20722, 44307 Nantes Cedex 3, France
Pierre.Dejax@emn.fr

3 Centre de recherche sur les transports
Université de Montréal

C.P. 6128 succursale Centre-ville, Montréal, Canada H3C 3J7
michelg@crt.umontreal.ca

4 Département de recherche opérationnelle
Direction Générale des Systèmes d’Information, AIR FRANCE

1, av. du Maréchal Devaux, 91551 Paray-Vieille-Poste Cedex, France
cygueguen@airfrance.fr



Abstract In this paper, we propose a solution procedure for the Elementary Short-
est Path Problem with Resource Constraints (ESPPRC). A relaxed version of this
problem in which the path does not have to be elementary has been the backbone
of a number of solution procedures based on column generation for several important
problems, such as vehicle routing and crew-pairing. In many cases relaxing the restric-
tion of an elementary path resulted in optimal solutions in a reasonable computation
time. However, for a number of other problems, the elementary path restriction has
too much impact on the solution to be relaxed or might even be necessary. We propose
an exact solution procedure for the ESPPRC which extends the classical label cor-
recting algorithm originally developed for the relaxed (non-elementary) path version of
this problem. We present computational experiments of this algorithm for our specific
problem and embedded in a column generation scheme for the classical Vehicle Routing
Problem with Time Windows.

Key words: Shortest path, column generation, vehicle routing.

Résumé Dans cet article nous proposons une procédure de résolution du Problème
du Plus Court Chemin Elémentaire avec Contraintes de Ressources (ESPPRC). Une
version relaxée de ce problème, dans laquelle le chemin n’a pas à être élémentaire, a
été l’épine dorsale de nombreuses procédures de résolutions basées sur les techniques
de génération de colonnes, notamment pour des problèmes de tournées de véhicules
ou d’horaires d’équipes de travail. Dans de nombreux cas, cette relaxation permettait
d’obtenir des solutions optimales dans des temps raisonnables. Cependant, pour un
certain nombre d’autres problèmes, il est nécessaire ou important pour l’efficacité de
la résolution de maintenir les plus courts chemins élémentaires. Nous proposons une
procédure de résolution exacte pour le ESPPRC qui étend l’algorithme classique de
programmation dynamique développé dans le cas de chemins non élémentaires. Nous
présentons des expérimentations numériques pour le problème propre, ainsi que pour
un algorithme de génération de colonnes faisant appel à lui pour résoudre le Problème
de Tournées de Véhicules avec Fenêtres de Temps.

Mots-clés : plus court chemin, génération de colonnes, tournées de véhicules.

1



1 Introduction

In this paper, we propose a solution procedure for the Elementary Shortest Path
Problem with Resource Constraints (ESPPRC). A relaxed version of this prob-
lem, the Shortest Path Problem with Resource Constraints (SPPRC), in which
the path does not have to be elementary, has been the backbone of a number of
solution procedures based on column generation. This approach has successfully
been applied by Desrochers et al. [8] for the Vehicle Routing Problem with Time
Windows (VRPTW), by Lavoie et al. [23] for the airline crew pairing, by Graves
et al. [14] for the flight crew scheduling to mention only some examples. In these
problems, one might have resource constraints related to time (time windows,
route duration), capacity (vehicle capacity) and many other types of resources.
For these problems, the column generation approach involving the iterative solu-
tion of SPPRC instances results in optimal solutions in a reasonable computation
time.

The standard approach to solve the SPPRC in practice is based on dynamic
programming and has a pseudo-polynomial complexity. Briefly, the principle is
to associate with each possible partial path a label indicating the consumption
of resources and to eliminate labels with the help of dominance rules. In label
correcting approaches, nodes are repeatedly treated and their labels extended.
This approach is an extension of the Ford-Bellman algorithm. It was proposed by
Desrochers [7] in the SPPRC context. Within this approach, two strategies can be
employed. In reaching algorithms, labels on a node are extended to its successors.
In pulling algorithms, labels from its predecessors are pulled to the node currently
treated. Besides the label correcting approach, the label setting approach is an
extension of Dijkstra’s algorithm and works by the permanent marking of the
labels, that are treated in an order based on the resource consumption.

Another important solution approach for the SPPRC stems from the integer
linear programming formulation of the problem and the use of a Lagrangean relax-
ation technique. This approach takes advantage of the effectiveness of algorithms
that solve the unconstrained shortest path problem. Handler and Zang [16] and
Beasley and Christofides [2] address the problem this way, as Borndörfer et al.
[3] or Ziegelmann [26] more recently. Note that Ziegelmann [26] also provides a
survey devoted to the SPPRC, where more detailed information is available and
other solution approaches are mentioned.

Solving the SPPRC with a dynamic programming approach is also closely
related to solving multi-objective shortest path problems, which have received
the attention of many researchers. Indeed, the aim in these problems is also
to generate non-dominated paths (i.e., Pareto optimal paths). However, the
methods developed in the literature usually concern multi-objective shortest path
problems on graphs with non-negative lengths (see, for instance, Warburton [25]
and Hansen et al. [17]). The interested reader may find an exhaustive review of
multi-objective shortest path problems in Current and Marsh [5].

2



Unlike the SPPRC, the ESPPRC has been relatively neglected up to now.
However, for some vehicle routing applications that we will mention later, the sub-
problem encountered in the column generation procedure would advantageously
be solved as an ESPPRC. Dror [9] proved that the ESPPRC is NP-hard in the
strong sense. To our knowledge, no paper has been dedicated to its solution when
the graph contains negative costs, which frequently happens in the context of col-
umn generation. Gondran and Minoux [13] did, however, propose a sub-optimal
approach for solving the Elementary Shortest Path Problem (without resource
constraint) in graphs that might contain negative cost cycles.

The algorithm proposed in this paper is able to solve optimally the ESPPRC in
general graphs, even if they contain negative cost cycles. In Section 2, we describe
how the column generation technique is applied to the VRPTW by Desrochers
et al. [8]. We then highlight the advantages of maintaining the elementary path
condition within the column generation process. Section 3 describes formally the
ESPPRC. In Section 4, we extend Desrochers’ [7] label correcting algorithm for
the solution of the ESPPRC. Computational results of Section 5 conclude the
paper.

2 Shortcomings of the classical column genera-

tion solution approach for some vehicle rout-

ing problems

The basic VRPTW consists in designing an optimal set of delivery or collection
routes from a depot to a number of customers, subject to time windows and
capacity constraints. One of the most successful implementations of the column
generation approach for its solution has been proposed by Desrochers et al. [8].
The backbone of this approach is the introduction of the SPPRC as a subproblem
within the column generation procedure. Desrochers et al. [8] first formulate the
VRPTW using the Classical Set Partitioning Model:

minimize
∑

rk∈Ω

ckxk (1)

subject to ∑
rk∈Ω

aikxk = 1 ∀vi ∈ V, (2)

xk ∈ {0, 1} ∀rk ∈ Ω, (3)

where V = {v1, . . . , vn} is the set of customers, Ω is the set of feasible el-
ementary routes, ck is the cost of route rk ∈ Ω and aik is equal to 1 if route
rk ∈ Ω visits customer vi and 0 otherwise. This model suggests formulating the
subproblem as an ESPPRC.

3



Instead of the set partitioning model described above, Desrochers et al. [8]
introduce a set covering formulation, where they replace constraints (2) with
constraints ∑

rk∈Ω

aikxk ≥ 1 ∀vi ∈ V (4)

and where aik now represents the number of times route rk ∈ Ω visits customer
vi. This formulation no longer requires that the paths be elementary (the set Ω is
extended) and the subproblem changes to an SPPRC. Moreover, this relaxation
does not invalidate the solution process provided that the triangle inequality is
satisfied because, in this case, there exists an optimal solution of the integer
program that visits each customer at most once.

The approach of Desrochers et al. [8] is computationally very attractive be-
cause the SPPRC can be solved efficiently with dynamic programming. However,
this method has a significant disadvantage, which is a weakening of the lower
bound, as mentioned, for example, by Gelinas et al. [12]. The computational re-
sults of Section 5.2 will permit us to assess this weakening of the lower bound for
the VRPTW. Apart from this work, we also tested column generation for other
classes of routing problems where the relaxation was even more detrimental. An
illustrative example is the Vehicle Routing Problems with Profits class (see Feillet
et al. [11]), where it is not necessary to visit all customers, but profit is collected
at visited nodes. For this class of problems, the relaxation of the elementary path
restriction induces the collection of profit each time a customer is visited; this
leads to a very bad evaluation of the quality of the routes and, consequently, a
very bad bound.

In the context of the VRPTW, some work has been carried out in order to
limit the weakening of the lower bound, with the help of valid inequalities (Kohl
et al. [21]) or by eliminating cycles that contain no more than 2 arcs (e.g.,
Desrochers et al. [8]) or no more than k arcs (Irnich [19]). Even so, the potential
for lower bound improvement justifies the interest of developing an exact method
for solving the ESPPRC.

Note furthermore that the relaxation of the elementary path condition could
induce a malfunction of the algorithm, depending on the problem and on the
branching scheme. For Vehicle Routing Problems with Profits, optimal elemen-
tary routes might be dominated by non-elementary routes, as soon as the branch-
ing scheme does not prohibit cycles. In other problems, where vertices might be
visited more than once (e.g., the Split Delivery VRP or the Capacitated Arc
Routing Problem), the relaxation could lead to the appearance of negative cost
cycles that do not consume resources, which would disrupt the proper functioning
of the algorithm.

Before describing our solution procedure for the ESPPRC, we first state the
problem formally.

4



3 Description of the ESPPRC

Let G = (V, A) be a network, where A is the set of arcs and V = {v1, . . . , vn}
is the set of nodes, including an origin node p and a destination node d. A cost
cij is associated with each arc (vi, vj) ∈ A. Let L be the number of resources
and dl

ij ≥ 0 be the consumption of resource l along arc (vi, vj). Values dl
ij are

assumed to satisfy the triangle inequality for each resource l. With each node vi

and each resource l are associated two nonnegative values al
i and bl

i, such that the
consumption of resource l along a path from p to vi is constrained to belong to the
interval [al

i, b
l
i]. If the consumption of resource l is lower than al

i when the path
reaches vi, it is set to al

i. Note that this notation is natural for the time resource,
but also allows us to represent capacity constraints by defining intervals [0, Q] on
nodes, where Q is the capacity limit. The objective is to generate a minimum
cost elementary path from p to d that satisfies all resource constraints.

We now describe an algorithm for solving the ESPPRC in general graphs,
even if they contain negative cost cycles.

4 A label correcting algorithm to solve the ESP-

PRC

Let us first say that adjusting Desrochers’ label correcting algorithm [7] in order
to solve the ESPPRC instead of the SPPRC does not seem trivial. Indeed, it is
easy to notice that one cannot find an optimal elementary path by just solving
an SPPRC and selecting an elementary path among the set of optimal paths. It
is also obvious that one cannot find an optimal elementary path by solving the
SPPRC and by enforcing that only elementary paths be generated at each step
of the process. As a matter of fact, one should not expect to solve a strongly
NP-hard problem using a pseudo-polynomial algorithm.

While proposing a solution procedure for the SPPRC, Beasley and Christofides
[2] described how to find elementary paths in a graph using their algorithm: one
only has to add an extra binary resource for each node vk ∈ V that is consumed
when the node is visited. Beasley and Christofides [2] thought that their approach
would only be suitable for solving problems with a small number of resources and
they did not investigate the method further.

In this paper, we adapt this idea to Desrochers’ label correcting algorithm
[7]and strengthen it. Note that we do not investigate the possibilities of devel-
oping an algorithm with a different framework (as a label setting algorithm for
example), since our purpose was to focus on the elementary path question. In
the following, we use Desrochers’ notation, which we recall below.

5



4.1 Notation and principle of Desrochers’ algorithm for
the SPPRC

With each path Xpi from the origin node p to a node vi are associated a state
(T 1

i , T 2
i , . . . , TL

i ) corresponding to the quantity of each of the L resources used
by the path and a cost C(T 1

i , T 2
i , . . . , TL

i ). To simplify the notation, a label
(Ri, Ci) is defined for each path Xpi, where Ri = (T 1

i , T 2
i , . . . , TL

i ) and Ci =
C(T 1

i , T 2
i , . . . , TL

i ).
Let X ′

pi and X∗
pi be two distinct paths from p to vi with associated labels

(R′
i, C

′
i) and (R∗

i , C
∗
i ) respectively, X ′

pi dominates X∗
pi if and only if C ′

i ≤ C∗
i ,

T ′
i
l ≤ T ∗

i
l for l = 1, . . . , L and (R′

i, C
′
i) 6= (R∗

i , C
∗
i ).

To obtain the optimal solution of the shortest path problem, one just needs
to consider non-dominated labels, i.e., non-dominated paths (Desrochers [7]).

4.2 New definitions and claims

As proposed by Beasley and Christofides [2], we change the label definition and
add n extra binary resources, one for each node vk ∈ V . In order to compare
labels more efficiently, we also add another resource. This resource si counts the
number of nodes visited by a path Xpi.

Definition 1 With each path Xpi from the origin node p to a node vi, associate
a state Ri = (T 1

i , . . . , TL
i , si, V

1
i , . . . , V n

i ) corresponding to the quantity of each
resource used by the path, the number of visited nodes, and the visitation vector
(V k

i = 1 if the path visits node vk, 0 otherwise).

With this new definition of labels, the dominance relation in the comparison
of two labels is now stated as:

Definition 2 Let X ′
pi and X∗

pi be two distinct paths from p to vi with associated
labels (R′

i, C
′
i) and (R∗

i , C
∗
i ). X ′

pi dominates X∗
pi if and only if C ′

i ≤ C∗
i , s′i ≤ s∗i ,

T ′
i
l ≤ T ∗

i
l for l = 1, . . . , L , V ′

i
k ≤ V ∗

i
k for k = 1, . . . , n, and (R′

i, C
′
i) 6= (R∗

i , C
∗
i ).

This dominance relation is actually a simple restatement of the relation pro-
posed by Desrochers [7]. Note that si =

∑n
k=1 V k

i and that this resource is only
needed for computational purposes, since a label cannot dominate another label
if it visits more nodes.

These modifications still allow the use of the original Desrochers’ algorithm.
The principle of the algorithm remains the same: All non-dominated paths are
the extension of a non-dominated path. Indeed, the extension of a dominated
path Xpi with an arc (vi, vj) results in a path that is either dominated by or
equal to the extension X ′

pj of the path X ′
pi that dominates Xpi. Thus, during the

execution of the algorithm, one only needs to consider non-dominated paths.

6



This new definition of labels ensures we generate only labels corresponding to
elementary paths and we get the optimal solution of the problem. However, the
size of the state space increases drastically and one is likely to generate and to
keep many more labels during the solution.

4.3 Improved definition of the labels

In this section, we once more propose another definition of the labels, in order
to limit their number throughout the process. Let us consider a partial path and
its associated label. In the previous definition, the nodes belonging to the path
were stored in the visitation vector of the label. As these nodes have already
been visited, they cannot be visited in any extension of the corresponding path.
In addition, there may be other nodes which cannot be visited in any extension
of the corresponding path, due to resource limitations. The principle of this
new definition is that it is more efficient to know which nodes cannot be visited
anymore, whatever the reason. We call such nodes unreachable. When a label
is extended, visitation resources corresponding to nodes that cannot be visited
anymore (either because they have already been visited or because of resource
constraints) are consumed. This algorithmic modification is computationally
attractive because the dominance relation becomes sharper, as is shown in the
following example.

Let us consider an instance of the ESPPRC and focus on two nodes v1, v2

and two labels λa
2 = (10, sa

2, 0, 1, C
a
2 ) and λb

2 = (5, sb
2, 1, 1, C

b
2) on node v2. The

resources respectively correspond to time, the number of visited nodes and the
visitation vector restricted to {v1, v2}. We suppose that sb

2 ≤ sa
2, that Cb

2 ≤ Ca
2

and that V k
2

b ≤ V k
2

a
for all the other nodes of the graph. Let us finally suppose

that label λa
2 cannot be extended to node v1 due to the time resource limitation.

With the dominance relation of Section 4.2, neither of these two labels dominates
the other. Yet we are sure that any extension of λa

2 until the destination can be
replicated for λb

2, and that the path resulting from the extension of λa
2 will be

more costly. Using the approach described in the previous paragraph, the labels
become λ′

2
a = (10, s′2

a, 1, 1, Ca
2 ) and λ′

2
b = (5, s′2

b, 1, 1, Cb
2), where the resources are

respectively time, the number of unreachable nodes and the vector of unreachable
nodes. With this new definition, λ′

2
b dominates λ′

2
a, which was expected.

We now have to formalise these ideas. Let us define the concept of unreachable
node and propose a new definition for the labels.

Definition 3 For each path Xpi from the origin node p to a node vi ∈ V , a node
vk is said to be unreachable if it is included in Xpi or if there exists a resource
l ∈ {1, . . . , L} satisfying T l

i + dl
ik > bl

k (which means that the current value of
consumption of l prevents the path from reaching node vk).

Definition 4 With each path Xpi from the origin node p to a node vi ∈ V ,
associate a state Ri = (T 1

i , . . . , TL
i , si, V

1
i , . . . , V n

i ) corresponding to the quantity

7



of the resources used by the path, the number of unreachable nodes and the vector
of unreachable nodes, defined by V k

i = 1 if node vk is unreachable.

Note that a node is said to be unreachable when it cannot be attained directly
using an outgoing arc. It also means that there does not exist any path that
permits to reach it since the triangle inequality holds for the resources. Note also
that we still have si =

∑n
k=1 V k

i .
With the above definitions, we can keep the same dominance relation and

only consider non-dominated paths.

Claim 1 During the execution of the modified algorithm, we need only to consider
non-dominated paths.

Proof
Consider two labels on node vi, (R′

i, C
′
i) and (Ri, Ci) such that (R′

i, C
′
i) dominates

(Ri, Ci). Let X ′
pi and Xpi be the respective associated paths from the origin node

p to node vi and consider an arc (vi, vj) such that the extension of Xpi by (vi, vj)
is a feasible elementary path from p to vj. Denote this path Xpj. We have to
show that the extension of X ′

pi by (vi, vj) also leads to a feasible elementary path
X ′

pj from p to vj that is either equal to or dominates Xpj. The claim follows by
applying this result inductively.

The first point is to show that X ′
pi can be extended by (vi, vj). T ′

i
l ≤ T l

i for

l = 1, . . . , L. Since T ′
j
l = max{al

j, T
′
i
l + dl

ij} and T l
j = max{al

j, T
l
i + dl

ij}, we have

T ′
j
l ≤ T l

j for l = 1, . . . , L. We also have V ′
i

j ≤ V j
i and V j

i = 0, since (R′
i, C

′
i)

dominates (Ri, Ci) and since it is possible to extend Xpi by (vi, vj). Thus, V ′
i

j = 0
and it is possible to extend X ′

pi by (vi, vj).
We now have to show that X ′

pj is either equals to or dominates Xpj. We

already know that T ′
j
l ≤ T l

j for l = 1, . . . , L. The definition of the vector of

unreachable nodes implies that V ′
j

j = V j
j = 1. It is also clear that C ′

j = C ′
i +cij ≤

Ci+cij = Cj. Thus, it just remains to check that V ′
j

k ≤ V k
j for every node vk 6= vj

and that s′j ≤ sj. Let us begin with the vector of unreachable nodes. We have
to show that a node that is unreachable for X ′

pj is also unreachable for Xpj. Let
vk 6= vj be an unreachable node for X ′

pj. Using the definition of unreachable
nodes, vk is either included in X ′

pj or there exists a resource l ∈ {1, . . . , L}
satisfying T ′

j
l + dl

jk > bl
k. But:

- First, if vk is included in X ′
pj, it is included in X ′

pi and V ′
i

k = 1. We also

know that V ′
i

k ≤ V k
i and that V k

i ≤ V k
j . This permits to conclude that

V k
j = 1.

- Second, if there exists l ∈ {1, . . . , L} with T ′
j
l + dl

jk > bl
k, Tj

l + dl
jk > bl

k

since T ′
j
l ≤ T l

j for l = 1, . . . , L.

8



Thus, if a node vk 6= vj is unreachable for X ′
pj, it is also unreachable for Xpj,

which means exactly that V ′
j

k ≤ V k
j for every node vk 6= vj. Finally, this last

result implies that s′j ≤ sj, from which we conclude that (R′
j, C

′
j) is either equal

to or dominates (Rj, Cj) .

It is easy to implement this label modification. Indeed, while extending a
label, we just have to update the set of unreachable nodes. For this purpose, we
assess the feasibility of an extension through every outgoing arc. Note that the
computation time devoted to this task depends on the value of L. When L is
too large, the definition of an unreachable node could be adapted by only taking
a subset of prominent resources into account, in order to limit the computation
times. Otherwise, when L is low, it does not take much longer to determine the
unreachable nodes than to store the nodes that have been visited. A complete
description of the algorithm is given below.

4.4 Description of the algorithm

We need the following notation to describe the algorithm:

• Λi: List of labels on node vi.

• Succ(vi): Set of successors of node vi.

• E: List of nodes waiting to be treated.

• Extend(λi, vj): Function that returns the label resulting from the extension
of label λi ∈ Λi towards node vj when the extension is possible, nothing
otherwise. The function first updates the consumption of resources l =
1, . . . , L. If the resource constraints are satisfied, it explores the set of
outgoing arcs in order to update the vector of unreachable nodes and the
number of unreachable nodes.

• Fij: Set of labels extended from node vi to node vj.

• EFF (Λ): Procedure that keeps only non-dominated labels in the list of
labels Λ.

We now describe the procedure Espprc(p) which determine all the non-
dominated paths starting from node p to every node of the graph.

Espprc(p)
1 Initialization
2 Λp ← {(0, ..., 0)}
3 for all vi ∈ V \ {p}
4 do Λi ← ∅

9



5 E = {p}
6
7 repeat
8 Exploration of the successors of a node
9 Choose vi ∈ E

10 for all vj ∈ Succ(vi)
11 do Fij ← ∅
12 for all λi = (T 1

i , . . . , TL
i , si, V

1
i , . . . , V n

i , Ci) ∈ Λi

13 do if V j
i = 0

14 then Fij ← Fij ∪ {Extend (λi, vj)}
15 Λj ← EFF (Fij ∪ Λj)
16 if Λj has changed
17 then E ← E ∪ {vj}
18 Reduction of E
19 E ← E\{vi}
20 until E = ∅

The time complexity of this algorithm is strongly related to the structure of
the graph, the numbering of the nodes and the tightness of resource constraints.
If the problem is highly constrained, it is possible to solve quite large problems
as it is shown in Section 5.1.

5 Computational results

The computational study is divided into two parts. First, we present experiments
on ESPPRC instances. Second, we tackle the solution of VRPTW instances with
a column generation approach using the ESPPRC as a subproblem. Let us recall
that the VRPTW does not require the use of an ESPPRC solution algorithm, but
our purpose was to highlight the differences with the usual solution methodology.
For both parts, we use Solomon’s data sets [24]. These data sets are classified in
three categories: The r-instances where the customers are located randomly, the
c-instances where the customers are located in clusters and the rc-instances with
some random and some clustered structures. The number of customers is 100 for
every instance but smaller instances are created by considering only the first 25
or the first 50 customers.

Each instance is represented by a complete graph G = (V, A), where V =
{v1, . . . , vn} is the set of customers. In the data sets, the distance matrix is not
explicitly stated, but customer locations are given. We note distij the distance
between two customers vi and vj and we define distij as the Euclidean distance
between these customers, calculated with one decimal point and truncation. It
is interesting to note that working with non-truncated values would not have
affected our computation times. Two resources are defined: time and load. Time

10



consumption d1
ij is given by d1

ij = sti + distij where vi and vj are two customers
and sti represents the service time for customer vi. Load consumption d2

ij is given
by d2

ij = qj where qj is the quantity to deliver to customer vj. Each customer vi

receives a time interval [a1
i , b

1
i ] representing the time window and a load interval

[0, Q] representing the load limit, where Q is the vehicle capacity. Due to the
resource constraints, and especially to the time windows in the present case, some
connections are forbidden. The corresponding arcs are then removed from the
graph.

Computational experiments were carried out on a PC with a 333 MHz pro-
cessor and with 128 Megabytes of RAM. Algorithms were implemented in C++
with Visual C++ 5.0 Compiler. The computation times were calculated with the
clock() function. The maximum allowed time to find a solution was set to 300
seconds in the first part of the computational study and to 3600 seconds in the
second part.

5.1 Using the algorithm to solve the ESPPRC

The efficiency of our algorithm is assessed on Solomon’s data sets [24] with
the following cost definition. With each arc (vi, vj) ∈ A is associated a cost
cij = distij − αi, where αi is a random integer variable, uniformly distributed in
{0, . . . , 20}. The limit value 20 has been chosen to generate a reasonable number
of arcs having a negative cost. For each instance, we look for the shortest ele-
mentary path starting from the depot, coming back to an artificial copy of the
depot and satisfying resource constraints.

Results are summarized in Tables 1, 2 and 3. For each instance, we first give
the number of arcs in the graph, its density and the percentage of arcs with a
negative cost. Column ] labels gives the cardinality of the solution set (containing
all the Pareto optimal paths), i.e., the number of labels on the destination node
at the end of the algorithm. The computation time (in seconds) needed for
the solution is given in column CPU. The last column gives the ratio of the
computation times using or not the improvement described in Section 4.3. Empty
rows or cells indicate that the problem was not solved within the 300s time limit
allowed.

Our algorithm succeeds in solving 75 instances out of 87 in less than 300
seconds while the version without the improvement described in Section 4.3 per-
mits only to solve 47 instances. Furthermore, Table 4 highlights the significant
reduction of computing times resulting from this improvement. Note that the
values of this table are obtained by considering only the 47 instances solved by
both algorithms in the allowed time. It is also interesting to note that if we only
consider instances solved in more than 10 seconds by the initial algorithm (be-
fore the improvement), which implies that the side effects of the data treatment
disappear, ratios of Table 4 respectively increase up to 28.65 for the r-instances,
636.14 for the c-instances and 32.60 for the rc-instances.

11



Problem ] Arcs Density % Neg Arcs Before Imp After Imp Ratio
CPU ] labels CPU ] labels

r101.25 225 34.61 6.7 0.01 28 0.01 12 1
r101.50 813 31.88 8.0 0.04 83 0.03 11 1.3
r101.100 3244 32.12 9.9 11.29 2606 0.41 29 27.5
r102.25 413 63.54 7.7 0.01 37 0.02 22 0.5
r102.50 1504 58.98 7.0 0.68 317 0.22 42 3.1
r102.100 5813 57.55 9.6 280.35 1472
r103.25 525 80.77 6.5 0.03 38 0.03 26 1
r103.50 1970 77.25 6.5 9.16 1221 1.01 101 9.1
r103.100 7705 76.29 8.7
r104.25 580 89.23 6.2 0.03 41 0.05 32 0.6
r104.50 2398 94.40 5.9 58.96 1121
r104.100 9187 90.96 8.1
r105.25 301 46.31 6.0 0.01 301 0.01 12 1
r105.50 1068 41.88 7.4 0.18 146 0.09 17 2
r105.100 4261 42.19 9.7 1.63 84
r106.25 462 71.08 7.1 0.02 462 0.03 22 0.7
r106.50 1696 66.51 6.8 3.68 832 0.49 84 7.5
r106.100 6559 64.94 9.5
r107.25 550 84.61 6.2 0.03 40 0.04 26 0.7
r107.50 2092 82.04 6.1 38.43 2714 1.86 163 20.7
r107.100 8206 81.25 8.7
r108.25 598 92.00 6.0 0.04 598 0.05 33 0.8
r108.50 2437 95.57 5.9 67 1196
r108.100 9411 93.18 8.2
r109.25 411 63.23 6.3 0.02 35 0.02 16 1
r109.50 1534 60.16 6.9 1.20 362 0.29 35 4.1
r109.100 6033 59.73 9.6 11.3 234
r110.25 527 81.08 5.7 0.04 42 0.04 22 1
r110.50 2019 79.18 6.3 54.48 2919 1.17 119 46.6
r110.100 7966 78.87 8.9
r111.25 526 80.92 6.5 0.03 39 0.03 26 1
r111.50 2035 79.80 6.4 29.97 2356 1.51 125 19.8
r111.100 7958 78.79 8.6
r112.25 647 99.54 5.7 0.08 45 0.07 41 1.1
r112.50 2528 99.14 5.7 5.24 305
r112.100 10014 99.15 8.0

Table 1: Solution of the ESPPRC for r-instances.

12



Problem ] Arcs Density % Neg Arcs Before Imp After Imp Ratio
CPU ] labels CPU ] labels

c101.25 333 51.23 23 2.08 2206 0.02 51 104
c101.50 1218 47.76 14 154.54 9606 0.13 49 1188
c101.100 4516 44.71 8.3 0.86 75
c102.25 475 73.08 24 88.94 6357 0.88 498 101.1
c102.50 1749 68.59 14 1.85 185
c102.100 6684 66.18 7.5 99.04 456
c103.25 570 87.69 21 6.46 560
c103.50 2188 85.80 14 96.42 1301
c103.100 8526 84.42 7.4
c104.25 605 93.08 21 186.13 1837
c104.50 2462 96.55 14
c104.100 9597 94.96 7.3
c105.25 358 55.08 22 2.31 2206 0.03 52 77
c105.50 1334 52.31 14 0.18 50
c105.100 5052 50.02 7.6 1.15 77
c106.25 337 51.85 23 2.06 2203 0.03 50 68.7
c106.50 1273 49.92 15 255.69 10625 0.16 56 1598.1
c106.100 5423 53.69 7.8 1.7 101
c107.25 378 58.15 21 4.02 2698 0.03 58 134
c107.50 1444 56.63 13 0.22 65
c107.100 6694 66.28 46 125.47 260
c108.25 432 66.46 22 10.36 2816 0.08 85 129.5
c108.50 1643 64.43 14 0.45 102
c108.100 6343 62.80 7.5 3.31 168
c109.25 483 74.31 22 31.17 4134 0.19 138 164.0
c109.50 1896 74.35 14 1.5 227
c109.100 7455 73.81 7.2 11.36 470

Table 2: Solution of the ESPPRC for c-instances.

13



Problem ] Arcs Density % Neg Arcs Before Imp After Imp Ratio
CPU ] labels CPU ] labels

rc101.25 277 42.62 19 0.03 147 0.02 18 1.5
rc101.50 833 32.67 19 0.68 748 0.08 29 8.5
rc101.100 3642 36.06 7.9 18.30 2584 0.74 35 24.7
rc102.25 440 67.69 18 0.14 237 0.05 54 2.8
rc102.50 1463 57.37 14 10.74 1390 0.34 27 31.6
rc102.100 6002 59.43 6.5 8.96 148
rc103.25 546 84.00 16 0.2 257 0.11 74 1.8
rc103.50 1941 76.12 13 66.44 1842 1.29 43 51.5
rc103.100 7820 77.43 5.8 242.92 1258
rc104.25 592 91.08 16 0.67 312 0.23 116 2.9
rc104.50 2376 93.18 12 12.30 409
rc104.100 9274 91.82 5.4
rc105.25 371 57.08 20 0.06 185 0.03 22 2
rc105.50 1242 48.71 16 3.09 1155 0.28 28 11
rc105.100 5250 51.98 6.9 248.68 8700 8.54 75 29.1
rc106.25 388 59.69 19 0.08 277 0.04 34 2
rc106.50 1243 48.74 18 5.03 1606 0.33 31 15.2
rc106.100 5390 53.37 7.3 3.44 65
rc107.25 514 79.08 18 0.44 278 0.14 45 3.1
rc107.50 1835 71.96 15 65.52 3232 2.51 111 26.1
rc107.100 7542 74.67 6.4 26.97 177
rc108.25 617 94.92 16 1.01 307 0.34 92 3
rc108.50 2317 90.86 12 8.79 184
rc108.100 9313 92.21 5.5 207.08 486

Table 3: Solution of the ESPPRC for rc-instances.

Instance type Before Imp After Imp Ratio
CPU1 CPU2

r-instances 6.79 0.34 6.92
c-instances 61.24 0.17 396.1
rc-instances 26.32 0.94 13.6

Table 4: Summary of average computation times and ratios (on the 47 instances
solved by both algorithms).

14



Finally, these results tend to confirm the intuitive idea that the more negative
arcs there are, the more complicated the problem is.

5.2 Using the algorithm inside a column generation solu-
tion procedure

Even if our algorithm can specifically be used for the solution of the ESPPRC, our
major concern is its potential for the solution of complex routing problems using
a column generation approach. In this section, we assess the algorithm efficiency
on Solomon’s instances [24], embedded in a column generation procedure devoted
to the solution of the VRPTW. Because our objective is just to test the shortest
path algorithm, i.e., the subproblem of the column generation scheme, we only
address the solution of the linear relaxation of the problem. Even so, we directly
obtain some integer solutions that are labeled with an asterisk in the result tables.

Linear programs are solved with CPLEX 6.0 [18]. The interface between
CPLEX and the programming language is realized with the help of LPToolKit
3.6 [10].

In the following tables, we compare the results obtained with two methods.
The first one is the usual column generation approach, where the subproblem is a
SPPRC. In the second one, the elementary path restriction is not relaxed and we
use our algorithm (see Section 2). For each instance and each method, we indicate
the number of subproblems solved during the column generation process (] iter),
the number of columns generated (] col), the linear relaxation value (LB) and the
computation time (CPU). The column Gap gives the gap between the two relaxed
values, i.e., the difference between the two lower bounds as a percentage of the
elementary lower bound. The last column is the ratio CPU2/CPU1 when both
methods have finished within the time limit of 3600 seconds. Cells are empty
when results are not available (due to the time limit). Results are respectively
presented in Tables 5, 6 and 7, for r-, c- and rc-instances.

Note that the column generation process is initiated with an adaptation of
the savings algorithm of Clarke and Wright [4], which takes account of the time
windows constraints. Note also that, at each iteration, all the columns with a
negative reduced cost are incorporated into the master problem. A more sophis-
ticated management of the columns might have reduced the computing time (see
Desaulniers et al. [6]). Finally, note that we use a set covering model for both
methods, so as to limit the size of the dual solution space.

The computational results allow us to draw several conclusions. The linear
relaxation is tighter in the elementary path version 57 out of 87 times. The non-
elementary path version is generally faster than the elementary path one, even
if the CPU ratio is less than 2, 45 out of 77 times. In particular, our algorithm
only failed to solve 10 instances out of the 87. The gap between both bounds is
quite small, but the elementary path version is able to directly find 39 optimal
solutions compared to only 16 for the non-elementary path version. Thus, it

15



Non-elementary Elementary
Problem ] iter1 ] col1 LB1 CPU1 ] iter2 ] col2 LB2 CPU2 Gap Ratio
r101.25 10 122 *617.10 0.78 9 129 *617.10 0.67 0.00 0.86
r101.50 22 354 1043.37 3.29 22 472 1043.37 2.86 0.00 0.87
r101.100 43 1448 1631.15 8.63 34 1705 1631.15 13.2 0.00 1.53
r102.25 16 364 546.333 1.81 12 461 546.333 1.68 0.00 0.93
r102.50 25 1202 *909.00 4.29 19 1634 *909.00 6.35 0.00 1.48
r102.100 50 3828 *1466.60 28.67 32 8524 *1466.60 141.06 0.00 4.92
r103.25 23 603 454.067 2.91 20 701 *454.60 3.74 0.12 1.29
r103.50 32 1751 756.117 8.19 22 3856 769.233 24.69 1.71 3.01
r103.100 64 7432 1203.24 126.5 44 28706 1206.78 3073.52 0.29 24.30
r104.25 24 796 414.85 3.34 15 1232 *416.90 3.32 0.49 0.99
r104.50 44 3101 608.521 26.85 28 12988 619.077 338.84 1.71 12.62
r104.100 70 9915 937.22 424.01
r105.25 15 228 *530.50 1.58 14 218 *530.50 1.56 0.00 0.99
r105.50 30 841 890.187 3.95 30 836 892.12 4.67 0.22 1.18
r105.100 45 2702 1341.19 15.06 44 3412 1346.14 38.73 0.37 2.57
r106.25 23 507 457.3 2.73 14 702 457.3 1.98 0.00 0.73
r106.50 35 1535 789.433 7.23 23 2544 791.367 11.79 0.24 1.63
r106.100 60 5893 1212.35 76.31 37 14234 1227.16 503.12 1.21 6.59
r107.25 23 822 415.125 3.13 18 762 *424.30 2.74 2.16 0.88
r107.50 39 2455 697.767 13.68 24 4724 707.26 37.2 1.34 2.72
r107.100 54 8573 1036.96 206.63
r108.25 21 723 389.424 3.00 17 1496 396.821 4.89 1.86 1.63
r108.50 44 3495 578.482 34.31 26 23062 594.699 768.21 2.73 22.39
r108.100 64 11593 891.562 607.42
r109.25 20 320 439.425 2.25 17 296 *441.30 1.93 0.42 0.86
r109.50 25 1363 727.515 4.69 28 1710 775.342 7.47 6.17 1.59
r109.100 42 4825 1097.49 37.13 35 7190 1134.11 114.53 3.23 3.08
r110.25 19 510 419.072 2.35 13 589 438.35 1.78 4.40 0.76
r110.50 28 1668 675.457 7.95 23 2447 695.061 14.03 2.82 1.76
r110.100 47 6033 1021.3 119.76 33 15006 1055.57 695.03 3.25 5.80
r111.25 19 580 412.815 2.56 16 551 427.283 2.53 3.39 0.99
r111.50 31 2283 658.752 10.75 26 4268 696.285 30.19 5.39 2.81
r111.100 55 8571 1005.93 168.13 41 32214 1034.73 2930.93 2.78 17.43
r112.25 19 674 365.03 2.78 18 1146 387.05 3.69 5.69 1.33
r112.50 39 2652 582.715 21.24 25 5712 614.851 69.55 5.23 3.27
r112.100 62 8879 892.508 469.98

Table 5: Solution of the VRPTW by column generation for r-instances.

16



Non-elementary Elementary
Problem ] iter1 ] col1 LB1 CPU1 ] iter2 ] col2 LB2 CPU2 Gap Ratio
c101.25 41 693 *191.3 4.77 41 605 *191.3 5.87 0.00 1.23
c101.50 66 1552 *362.4 10.55 52 1211 *362.4 9.25 0.00 0.88
c101.100 70 2498 *827.3 14.7 70 2557 *827.3 38.58 0.00 2.62
c102.25 39 1524 189.15 7.47 26 2304 *190.3 9.48 0.60 1.27
c102.50 48 2326 360.25 14.87 35 5587 *361.4 46.92 0.32 3.16
c102.100 100 6020 827.3 105.98
c103.25 35 1425 187.857 8.99 24 6080 *190.3 67.28 1.28 7.48
c103.50 65 3844 360.25 36.81 40 11047 *361.4 507.51 0.32 13.79
c103.100 106 7037 826.3 298.82
c104.25 34 1980 184.339 11.51 27 9195 *186.9 459.22 1.37 39.90
c104.50 50 4151 352.266 88.9
c104.100 93 7738 821.53 616.73
c105.25 35 644 *191.3 5.43 37 724 *191.3 5.11 0.00 0.94
c105.50 59 1600 *362.4 10.99 55 1368 *362.4 11.64 0.00 1.06
c105.100 106 3774 *827.3 35.21 97 3830 *827.3 90.91 0.00 2.58
c106.25 38 551 *191.3 4.36 49 781 *191.3 5.76 0.00 1.32
c106.50 45 1305 *362.4 6.79 55 1696 *362.4 10.63 0.00 1.57
c106.100 95 3956 *827.3 41.57 99 4582 *827.3 136.38 0.00 3.28
c107.25 43 824 *191.3 6.58 38 870 *191.3 4.7 0.00 0.71
c107.50 64 2107 *362.4 11.31 60 2035 *362.4 13.81 0.00 1.22
c107.100 103 4333 *827.3 43.92 111 5516 *827.3 155.1 0.00 3.53
c108.25 34 838 187.84 5.37 35 983 *191.3 5.58 1.81 1.04
c108.50 45 1827 359.81 10.33 49 1770 *362.4 16.79 0.71 1.63
c108.100 80 4144 817.352 53.45 102 6398 *827.3 250.17 1.20 4.68
c109.25 26 995 181.924 4.45 29 1280 *191.3 5.55 4.90 1.25
c109.50 49 2488 354.309 16.64 47 2730 *362.4 36.76 2.23 2.21
c109.100 81 5681 809.402 87.46 87 9866 *827.3 611.59 2.16 6.99

Table 6: Solution of the VRPTW by column generation for c-instances.

17



Non-elementary Elementary
Problem ] iter1 ] col1 LB1 CPU1 ] iter2 ] col2 LB2 CPU2 Gap Ratio
rc101.25 26 344 390.15 3.58 25 402 406.625 3.58 4.05 1.00
rc101.50 34 714 826.613 4.8 25 892 850.021 4.02 2.75 0.84
rc101.100 46 2248 1567.45 12.82 38 2833 1584.09 22.83 1.05 1.78
rc102.25 31 618 347.067 4.27 26 628 *351.8 3.77 1.35 0.88
rc102.50 41 1225 706.606 10.55 32 1846 721.815 12.78 2.11 1.21
rc102.100 48 3773 1380.21 37.61 37 8574 1406.26 148.87 1.85 3.96
rc103.25 24 811 314.982 4.03 25 949 *332.8 7.09 5.35 1.76
rc103.50 45 1898 614.069 19.18 32 2810 645.281 40.7 4.84 2.12
rc103.100 63 5629 1170.32 141.42 33 21381 1225.54 1192.63 4.51 8.43
rc104.25 30 950 287.539 6.73 25 915 *306.6 8.08 6.22 1.20
rc104.50 52 2373 524.119 84.98 31 3771 *545.8 241.1 3.97 2.84
rc104.100 62 8381 1052.55 524.09
rc105.25 22 535 408.525 2.72 18 508 *411.3 2.38 0.67 0.88
rc105.50 37 1189 746.314 6.94 28 1404 761.558 8.07 2.00 1.16
rc105.100 53 3524 1453.89 27.44 47 5124 1471.93 81.93 1.23 2.99
rc106.25 26 746 314.274 3.63 25 535 *345.5 3.73 9.04 1.03
rc106.50 35 1458 633.228 9.36 30 1368 664.433 8.77 4.70 0.94
rc106.100 48 3881 1248.96 39.91 41 5546 1318.8 109 5.30 2.73
rc107.25 34 846 281.289 7.68 31 687 *298.3 6.44 5.70 0.84
rc107.50 44 2139 570.665 29.06 36 2791 603.583 53.15 5.45 1.83
rc107.100 55 5475 1117.37 162.12 41 11568 1183.37 651.46 5.58 4.02
rc108.25 32 1025 270.573 10.43 22 1129 *294.5 9.47 8.12 0.91
rc108.50 45 2089 525.12 47.96 36 3308 541.167 240.31 2.97 5.01
rc108.100 57 7435 1035.71 350.82

Table 7: Solution of the VRPTW by column generation for rc-instances.

18



is conceivable to expect the efficient solution of the VRPTW using a column
generation methodology and our algorithm for the subproblem solution. The
reader is referred to Kohl et al. [21] and Irnich [20] to compare our results with
different kinds of bounds. Besides, the advantages of this algorithm, essentially
the gap reduction and its adaptability for branching, could offset the loss in
efficiency for many complex constrained vehicle routing problems.

Finally, let us mention that we have successfully experimented our algorithm
for the solution of instances with up to 100 customers for two Vehicle Rout-
ing Problems with Profits, the so-called Selective Vehicle Routing Problem with
Time Windows and Prize-collecting Vehicle Routing Problem with Time Win-
dows (which respectively extend the Selective Traveling Salesman Problem, e.g.,
Laporte and Martello [22], and the Prize-collecting Traveling Salesman Problem,
e.g., Balas [1]). See Gueguen [15] for a complete description of these applications.

6 Conclusion

In this paper, we have presented an algorithm for the optimal solution of the El-
ementary Shortest Path Problem with Resource Constraints (ESPPRC). Besides
the obvious interest in solving constrained elementary shortest paths problems,
this algorithm aims to be used within column generation schemes, for the solution
of important problems such as vehicle routing. In this context, it has two main
advantages. Firstly, it reduces the duality gap, compared to the usual approaches
that are based on the SPPRC bound. Secondly, it enables the use of a column
generation solution methodology for some special problems or with some special
branching schemes that cannot rely on SPPRC solutions.

The algorithm is based on Desrochers’ label correcting algorithm [7] and new
resources are introduced to enforce the elementary path constraint, as proposed
by Beasley and Christofides [2]. We have strongly improved the efficiency of the
algorithm with the introduction of the idea of unreachable nodes.

Our computational study performed on a variety of data demonstrates the
efficiency of our algorithm and shows that our approach can successfully be used
for solving ESPPRC instances of moderate sizes. We also have obtained satisfac-
tory results when applying our algorithm to the solution of the Vehicle Routing
Problem with Time Windows. Embedded in a column generation procedure,
our algorithm significantly reduces the gap with a reasonable computation time,
when used instead of a SPPRC solution algorithm. Finally, our approach has
also proved its efficiency concerning the solution of various problems, such as the
VRP with Profits, that we have not detailed in this paper.

19



Acknowledgments

This work was started while Pierre Dejax, Dominique Feillet and Cyrille Gueguen
were members of the Laboratoire Productique Logistique at Ecole Centrale Paris.
The authors wish to thank Maciej Witucki for numerous suggestions when ap-
plying our algorithm to his own problem and Moshe Dror for valuable comments
on the paper. The authors also thank two anonymous referees for their numerous
and very helpful comments and suggestions.

References

[1] Balas E. The Prize Collecting Traveling Salesman Problem. II: Polyhedral
results. Networks, 25(4):199–216, 1995.

[2] Beasley J.E. and Christofides N. An algorithm for the resource con-
strained shortest path problem. Networks, 19:379–394, 1989.

[3] Borndörfer R., Grötschel M., and Löbel A. Scheduling duties by
adaptative column generation. Technical Report ZIB-report 01-02, Konrad-
Zuze-Zentrum für Informationstechnik, Berlin, 2001.

[4] Clarke R.M. and Wright J.W. Scheduling of vehicles from a central
depot to a number of delivery points. Operations Research, 12:568–581, 1964.

[5] Current J. and Marsh M. Multiobjective transportation network design
and routing problems: Taxonomy and annotation. European Journal of
Operational Research, 65:4–19, 1993.

[6] Desaulniers G., Desrosiers J., and Solomon M.M. Accelerat-
ing strategies in column generation methods for vehicle routing and crew
scheduling problems. Technical Report G-99-36, GERAD, 1999.

[7] Desrochers M. An algorithm for the shortest path problem with resource
constraints. Technical Report G-88-27, GERAD, 1988.

[8] Desrochers M., Desrosiers J., and Solomon M. A new optimization
algorithm for the vehicle routing problem with time windows. Operations
Research, 40(2):342–354, 1992.

[9] Dror M. Note on the complexity of the shortest path models for column
generation in vrptw. Operations Research, 42(5):977–978, 1994.

[10] Eurodécision. LPToolKit, User’s Guide and Technical Reference, 3.6 edi-
tion, 1998.

20



[11] Feillet D., Dejax P., and Gendreau M. Traveling salesman prob-
lems with profits: An overview. Technical Report CER 00-04A, Laboratoire
Productique Logistique, Ecole Centrale Paris, 2000.

[12] Gelinas S., Desrochers M., Desrosiers J., and Solomon M.M. A
new branching strategy for time constrained routing problems with applica-
tion to backhauling. Annals of Operations Research, 61:91–109, 1995.

[13] Gondran M. and Minoux M. Graphes et Algorithmes. Eyrolles, 1985.

[14] Graves G.W., McBride R.D., Gershkoff I., Anderson D., and
Mahidhara D. Flight crew scheduling. Management Science, 39(6):657–
682, 1993.

[15] Gueguen C. Méthodes de résolution exacte pour les problèmes de tournées
de véhicules. PhD thesis, Laboratoire Productique Logistique, Ecole Centrale
Paris, 1999.

[16] Handler G.Y. and Zang I. A dual algorithm for the constrained shortest
path problem. Networks, 10:293–310, 1980.

[17] Hansen P., Jaumard B., and Vovor T. Solving the bicriterion shortest
path problem from both ends. Technical Report G-98-17, GERAD, 1998.

[18] ILOG Inc., CPLEX Division, Incline Village. ILOG, Using the CPLEX
Callable Library, 6.0 edition, 1998.

[19] Irnich S. The shortest path problem with k-cycle elimination (k≥3): Im-
proving a branch and price algorithm for the VRPTW. In TRISTAN IV,
volume 3, pages 571–574, 2001.

[20] Irnich S. The shortest path problem with k-cycle elimination (k≥3): Im-
proving a branch and price algorithm for the VRPTW. Technical report,
Lehr- und Forschungsgebiet Unternehmensforschung, Aachen university of
Technology, 2001.

[21] Kohl N., Desrosiers J., Madsen O.B.G., Solomon M.M., and
Soumis F. 2-path cuts for the vehicle routing problem with time windows.
Transportation Science, 33(1):101–116, 1999.

[22] Laporte G. and Martello S. The Selective Travelling Salesman Prob-
lem. Discrete Applied Mathematics, 26:193–207, 1990.

[23] Lavoie S., Minoux M., and Odier E. A new approach for crew pairing
problems by column generation with an application to air transportation.
European Journal of Operational Research, 35:45–58, 1988.

21



[24] Solomon M.M. Vehicle Routing and Scheduling with Time Window Con-
straints: Models and Algorithms. PhD thesis, Department of Decision Sci-
ences, University of Pennsylvania, 1983.

[25] Warburton A. Approximation of pareto optima in multiple-objective,
shortest-path problems. Operations Research, 35(1):70–79, 1987.

[26] Ziegelmann M. Constrained Shortest Paths and Related Problems. PhD
thesis, Universität des Saarlandes, 2001.

22


