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Section 1

Research context &motivation



A classical Interacting Particles System:
the Voter Model (VM)

Model describing a population of (socially) interacting agents :

• K agents with an opinion/spin {+1,−1} interacting over a
static graph G ∈ {0, 1}K2

:
alm = 1 ⇐⇒ l is under the influence of m;

• at regular random times, agent k matches opinion with a
random neighbor. ;

Only one social interaction is modeled: mimetism.
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A refinement: an adaptive network

A static interaction network is very restrictive.
By allowing dynamical edges, we aim to model two salient
behaviours: homophily and selective exposure.

Definition 1.1 (Homophily)
Homophily is the natural trend one has to connect with alike
people.

Definition 1.2 (selective exposure)
dismiss dissonant information and gainsayers.
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Section 2

Themodel



The Adaptive Voter Model (AVM)

• Each agent k ∈ [K] := {1, ...,K} possesses an opinion
xk ∈ {+1,−1};

• The opinion dynamics model just like in the standard VM.

• Interactions over a time-varying unweighted directed graph:
A(t) ∈ {0, 1}K2

for t ∈ R+.
• two additional edge-dynamics that are Node-centric:

1 a link-breaking procedure; agent l picks u.r an m ∈ Nl and
breaks his directed link only if xl(t−) ̸= xm(t−):
selective exposure

2 a link-creation procedure; agent l explores his social
environment by picking a m according to some linking
rules.

Or Edge-centric rules: i.e., each edge has an independent link
breaking/creation rate.
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An example in picture

Let us focus on agent 0:

0

flip

break

create a link

Γloc

Γglob
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Related literature
The classical VM has been extensively analyzed with various
refinements:
• Originally analyzed on the infinite lattice Zd in [Lig12], and on a tree-like
interaction network [Lig+99];

• based on a group-pressure mechanism1 [CMP09; Mob15];

• under heterogeneous networks [SAR08];

• using the majority rule [Yil+10].

The AVM (Adaptive VM) also attracts a growing attention:
• most of the work focuses on global linkage [Dur+12; GB08];
• the 2-hop linkage 2 is also studied but in a lesser extent
[Mal+16; RMS18];

Mostly, there always are only two parameters: the flip intensity ϕ
and the ratio γ

β : nodes break and rewire instantaneously.

1called non-linear q-voter model
2also called ”transitivity reinforcement” or ”triadic closure”
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Node-centric systems

Normalizing with the degree, we get a more agent-based system:
• Local linkage:

Γglob(lm; x,A) = γ(1− alm)
∑

j
alj

deg(l;A)
ajm

deg(j;A) 1(xl=xm)︸ ︷︷ ︸
Homophily

:

agent l picks a neighbour j U.R among Nl and then picks an
agent UR among Nj, and gets eventually connected if they
have same spin.

• flip: Φ(k; x,A) = ϕ
∑

j
akj

deg(k;A) : agent k picks UR one of its
neighbour and copies its spin.

• Break: B(lm; x,A) = β alm
deg(l;A) 1(xl ̸=xm)︸ ︷︷ ︸

Sel. Exp.
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Limit points of a Markov Process

Definition 3.1 (absorbing points)
An absorbing point ∂ of a Markov process (Zt)t is a state such that

Zt0 = ∂ =⇒ Zt = ∂ ∀t ≥ t0. (1)

Remark 3.2
There can be several absorbing points, but it is still stronger than
an absorbing set: when Z reaches a ∂, then it stays constant
forever.

For the AVMs under consideration, the absorbing points are
attractive in the following sense:

Tabs := inf
{

t > 0 : (XK,AK)(t) reaches an absorbing point
}
.

In addition, Tabs is of finite mean: ETabs < ∞ (and then a.s finite).
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The absorbing configurations for Γglob

If we take global linking Γglob, the absorbing points are:

Aglob =
{
(x, a) ∈ SK : ∀(l,m) ∈ [K]2, (xl = xm and alm = 1)

or (xl ̸= xm and alm = 0)
}

An absorbing state is then a clustered configuration where
• C+

⋃
C− = [K],C+

⋂
C− = ∅,

• with xk = +1 ∀l ∈ C+ and xk = −1 ∀k ∈ C−,
• and with no links between the two blocks: aC+C− = aC−C+ = 0.
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The absorbing configurations for Γloc

If we take local linkage Γloc, the absorbing points are:

Aloc =
{
(x, a) ∈ SK : k path−→ j =⇒ akj = 1 and xk = xj}.

Remark 3.3
In the case of Γ = Γloc, there can be much more than two clusters
because when two sets U,V ⊂ [K] get disconnected: alm = 0
∀(l,m) ∈ U × V, then they stay disconnected forever.

C1

C2 C3

C4 C5 C6

1-path-length completion:

∀k ∈ C1, j ∈ C6, akj = 1.

Cp are all complete graphs:
∀i, j ∈ Cp, aij = 1.
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How does discordance survive ?

Definition 3.4 (Discordance)
We say an edge lm is discordant if alm1(xl ̸=xm) > 0. We can define
total discordance of any configuration (x, a) ∈ SK as

D(x, a) :=
∑
lm

alm1(xl ̸=xm) (2)

Definition 3.5
slow extinction Define TK := inf {t > 0 : D(X(t),A(t)) = 0}. We say
that discordance slowly extincts if

∃c > 0,P
(
TK < ecK)

< e−cK. (3)

For which values of ϕ, β, γ does the discordance slowly extinct ?
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Section 4

Adiscrete time free global-linkage AVM



Model

We have a discrete time Markov process described by (X(t),A(t)),
described as follows. For all i ∈ V and t ∈ {1, 2, . . . }, we have

Pr(Xi(t + 1) = −Xi(t)) =
ϕ

N
N−

i (t)
max{1,Ni(t)}

. (4)

Additionally, for any j ∈ V ,

Pr(Ai,j(t + 1) = 0|Ai,j(t) = 1) = β
1

max{1,N−
i (t)}

(5)

and
Pr(Ai,j(t + 1) = 1|Ai,j(t) = 0) = γ

1

max{1,N − Ni(t)}
(6)

where Ni(t) =
∑N

j=1 Ai,j(t) and N−
i (t) =

∑N
j=1 Ai,j(t)0.5|Xi(t)− Xj(t)|.
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Metastability criteria (conjecture)

Define: x(t) :=
∑N

i=1 Xi(t)
N ,

NS(t) =
∑N

i=1 max 0,SXi(t),
aS1S2

=
∑N

i,j ai,j1(Xi=S1)(Xj(t)=S2)

max{1,NS1 (t)} max{1,NS2 (t)}
.

Approximation and metastability
Fr β >> γ, a+1,−1 > a−1,+1 (eventually) when x < 0
This leads to x = 0 being an attractive.
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Simulations

Adaptive Voter Models V.S. Varma Oct. 2022 17/33



Simulations

Illustrative simulation with ϕ = 0.1
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Section 5

Local linkage: study of an interesting
particular case



Description of the initial configuration

A unique agent labeled agent 0 is under the influence of two
cliques B+ and B− of large size with opposite orientation:

• xj = σ1 for j ∈ Bσ ;

• the two blocks are of same size: |B+| = |B−| = K >> 1

• the two blocks are static complete graphs:
∀t ≥ 0, alm(t) = 1 for all (l,m) ∈ (B+)2

⋃
(B−)2.

• Furthermore, the two blocks stay totally disconnected one
with the other: aml = alm = 0 ∀(l,m) ∈ B+ × B−.

• At initial time, a0k(0) = 1, for all k ∈ B+
⋃

B−.

B+

B−

agent 0

U

V

U(t) :=
∑

k∈B+

a0k(t) and U(t) := 1

KU(Kt)

V(t) :=
∑

k∈B−

a0k(t) and V(t) := 1

KV(Kt).
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the ODE approximation

Proposition 5.1 (long-term behaviour)
Let T be a finite horizon time. the system

(
Ū, V̄

)
can be

approximated as follows:

dŪ(t) = F1(Ū, V̄)dt + dϵu(t), (7)
dV̄(t) = F2(Ū, V̄)dt + dϵv(t), (8)

with F = (F1,F1) : [0, 1]
2 −→ [0, 1]2 being the following vector field:

F1(u, v) =
u

(u + v)2
(
γ(1− u)u1(u<1) − βv1(u>0)

)
, (9)

F2(u, v) =
v

(u + v)2
(
γ(1− v)v1(v<1) − βu1(v>0)

)
, (10)

and where (ϵu, ϵv) −→ 0 as K −→ ∞ for an appropriate norm.
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two regimes

Proposition 5.2
For γ > β, a first equilibrium p = (w∗,w∗) appears on the diagonal,
with w∗ = 1− β

γ . Moreover, for γ > 3β, two extra (unstable)
equilibria q1, q2 appear and p becomes stable.

Figure 1: The green curve corresponds to the trajectory of (U,V) ∈ [0, 1]2.
For γ

β
= 3.1, persistent hesitation occurs (right).

On the contrary, agent 0 is quickly convinced when γ
β
= 2.9 (left).
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Open questions

• What kind of additional results can be obtained for
the general local linkage Γ = Γloc ?

• Does a limiting (deterministic) system exist ?
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Section 6

Ongoingwork



Stochastic rates: edge-centric

• Free-global linkage: Γfglo(lm; x,A) = γ(1− alm),
OR

• Global linkage: Γglob(lm; x,A) = γ(1− alm) 1(xl=xm)︸ ︷︷ ︸
Homophily

,

OR
• Local linkage: Γloc(lm; x,A) := γ(1− alm)

∑
j aljajm 1(xl=xm)︸ ︷︷ ︸

Homophily

• Break: B(lm; x,A) = βalm 1(xl ̸=xm)︸ ︷︷ ︸
Sel. Exp.

• flip: Φ(k; x,A) = ϕ
∑

j akj1(xl ̸=xm) (standard voter model scheme)
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Discordance

Definition 6.1 (discordance)
The total discordance D(x, a) of any configuration (x, a) ∈ SK is
defined as:

D(x, a) := 1

K2

∑
lm

alm1(xl ̸=xm) =
1

K2

(
aC+C− + aC−C+

)
. (11)

If D(x, a) = 0, then we almost surely reach an AS (since the flip
process stops).
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Simulations

Five trajectories of the discordance with K = 500, (β, γ) = (1, 4)
and ϕ = 6.
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Simulations

Five trajectories of the discordance with K = 500, (β, γ) = (1, 4)
and ϕ = 1.
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Discussions and future works

1 External entities (advertisers, polical campaigns
etc.)controlling the opinions or graph dynamics

2 Consider non-VM OD models: continous OD and a discrete
graph dynamics: studied by Krause, Frasca etc..
So why not a continuous evolving graph?

3 Application of similar models to other frameworks like
epidemics.

Adaptive Voter Models V.S. Varma Oct. 2022 29/33



 
 

Questions?



 
 

Section 7

References



References I
[CMP09] Claudio Castellano, Miguel A Muñoz, and Romualdo Pastor-Satorras.

“Nonlinear q-voter model”. In: Physical Review E 80.4 (2009), p. 041129.

[Dur+12] Richard Durrett, James P Gleeson, Alun L Lloyd, Peter J Mucha, Feng Shi,
David Sivakoff, Joshua ES Socolar, and Chris Varghese. “Graph fission in
an evolving voter model”. In:
Proceedings of the National Academy of Sciences 109.10 (2012),
pp. 3682–3687.

[GB08] Thilo Gross and Bernd Blasius. “Adaptive coevolutionary networks: a
review”. In: Journal of the Royal Society Interface 5.20 (2008),
pp. 259–271.

[Lig+99] Thomas M Liggett et al.
Stochastic interacting systems: contact, voter and exclusion processes.
Vol. 324. springer science & Business Media, 1999.

[Lig12] Thomas Milton Liggett. Interacting particle systems. Vol. 276. Springer
Science & Business Media, 2012.

[Mal+16] Nishant Malik, Feng Shi, Hsuan-Wei Lee, and Peter J Mucha. “Transitivity
reinforcement in the coevolving voter model”. In:
Chaos: An Interdisciplinary Journal of Nonlinear Science 26.12 (2016),
p. 123112.

Adaptive Voter Models V.S. Varma Oct. 2022 32/33



References II
[Mob15] Mauro Mobilia. “Nonlinear q-voter model with inflexible zealots”. In:

Physical Review E 92.1 (2015), p. 012803.

[RMS18] Tomasz Raducha, Byungjoon Min, and Maxi San Miguel. “Coevolving
nonlinear voter model with triadic closure”. In: EPL (Europhysics Letters)
124.3 (2018), p. 30001.

[SAR08] Vishal Sood, Tibor Antal, and Sidney Redner. “Voter models on
heterogeneous networks”. In: Physical Review E 77.4 (2008), p. 041121.

[Yil+10] Mehmet E Yildiz, Roberto Pagliari, Asuman Ozdaglar, and
Anna Scaglione. “Voting models in random networks”. In:
2010 Information Theory and Applications Workshop (ITA). IEEE. 2010,
pp. 1–7.

Adaptive Voter Models V.S. Varma Oct. 2022 33/33


	Research context & motivation
	The model
	Node centric: global linkage
	A discrete time free global-linkage AVM
	Local linkage: study of an interesting particular case
	Ongoing work
	References
	References

