Opinion Dynamics Questions, Answers, and further Questions

Ulrich Krause

Talk at the

University of Avignon Laboratoire Informatique d'Avignon

October 21, 2022

Contents

[Introduction](#page-2-0)

[Mathematical Framework](#page-5-0)

[Main Results](#page-11-0)

³ [Applications](#page-21-0)

- [Data Segmentation and Clustering by a Macroscope](#page-21-0)
- **•** [Swarm Dynamics](#page-26-0)

4 [Further Topics](#page-28-0)

- **[Agent Specific Confidence Levels](#page-28-0)**
- [Dependence of Consensus on the Confidence](#page-31-0)

Simple Examples

Examples of scalar opinions of n agents with confidence level *ε*.

ε < a dissent forever, *ε* ≥ a consensus in next period by arithmetical mean

Simulation for six Agents

Figure: $n = 6$ agents, equally spaced with $\varepsilon = 0.2$, two clusters of size 3, freezing time $T = 6$.

First Results

Question: Any n, agents equally spaced by *ε*?

Peter Hegarty and Edvin Wedin. "The Hegselmann-Krause dynamics for equally spaced agents". In: Journal of Difference Equations and Applications 22.11 (2016), pp. 1621–1645

Case: $n = 6k + \ell$, $0 \le \ell \le 5$, equally spaced by ε

- After every fifth time step 3 agents will be disconnected from either end and then collaps to a cluster in the next time step.
- \bullet After finite time the final confirmation consists of 2k clusters of size 3.
- **Proof not trivial**

Question: What if agents are not equally spaced?

- **Case:** $n \leq 4$: consensus \Leftrightarrow max difference at $t = 0$ between neighbours $\leq \varepsilon$.
- This is not true for $n \geq 5$ (not obvious).

Contents

[Introduction](#page-2-0)

• [Mathematical Framework](#page-5-0)

[Main Results](#page-11-0)

[Applications](#page-21-0)

- [Data Segmentation and Clustering by a Macroscope](#page-21-0)
- [Swarm Dynamics](#page-26-0)

[Further Topics](#page-28-0)

- [Agent Specific Confidence Levels](#page-28-0)
- [Dependence of Consensus on the Confidence](#page-31-0)

Bounded Confidence Model in Higher Dimensions

Agents 1*,* 2*, . . . ,* n

Opinion Profile

- **Opinion profile** of agent *i* at time $t = 0, 1, 2, \ldots$ given by $(x^{1}(t),x^{2}(t),...,x^{n}(t))$
- d-dimensional opinions $x^{i}(t) \in \mathbb{R}^{d}$ with d aspects

Confidence Set

Confidence set of agent i for **confidence level** *ε* and profile $x = (x^1, x^2, \ldots, x^n)$ given by

$$
I(i,x) = \{1 \leq j \leq n \mid ||x^i - x^j|| \leq \varepsilon\}.
$$

 $\|\cdot\|$ norm on \mathbb{R}^d .

Dynamics

•
$$
x^{i}(t+1) = \frac{1}{\# I(i, x(t))} \cdot \sum_{j \in I(i, x(t))} x^{j}(t)
$$

 $=$ arithmetical mean of all agents in the confidence set of agent i

Bounded Confidence Model in Higher Dimensions

Matrix Model x x (t + 1) = $A(x(t)) \cdot x(t)$ with $a_{ij}(x) = \begin{cases} \frac{1}{\#(i,x)}, & \text{for } j \in I(i,x) \\ 0, & \text{otherwise.} \end{cases}$ 0*,* otherwise

• Dynamics state dependent on $x(t)$, nonlinear

More General Setting

- Multiagent system in higher dimensions
- $x(t+1) = A(t) \cdot x(t)$ with $x(0) \in (\mathbb{R}^d)^n$, $t = 0, 1, 2, ...$
- $A(t)$ row-stochastic $n \times n$ -matrix with $a_{ij}(t) \geq 0$ and $\sum_{j}^{n} a_{ij}(t) = 1$.
- Positive dynamical system in discrete time, time-variant

Main Questions

- A. Convergence of consensus $x^* = \lim_{t \to \infty} x^i(t)$ for $i \in \mathbb{N}$?
- B. Convergence at all if yes, to what limit pattern?

Simulations for 1D and 2D — Consensus

Figure: $n = 50$ agents in one dimension, start with a uniform random distribution, $\varepsilon = 0.25$, consensus at $T = 6$.

Figure: $n = 250$ agents in two dimensions, start with a uniform random distribution, $\varepsilon = 0.25$, consensus at $T = 21$.

Two Principles Considering Questions A and B

• Sequence of row-stochastic $n \times n$ -matrices $A(t)$ for $t = 0, 1, 2, \ldots$

The structure of interaction is not too weak

- **Principle of the third agent**
- Define block $B := A(t) \cdot A(t-1) \cdot \cdots \cdot A(s)$ for $s \leq t$
- **•** B is **scrambling** if for $i, j \in \mathbb{N}$ there exists a third agent k such that $b_{ik} > 0$ and $b_{ik} > 0$
- The sequence of $A(t)$'s is **blockwise scrambling** if there are infinitely many scrambling blocks

The intensity of interaction is not too small

- Define intensity: $\alpha(B) =$ (smallest positive entry of block B).
- **Block intensity rule**: $\sum_{B \in \varphi_s} \alpha(B)$ unbounded for a sequence φ_s of blocks

Example

Markov chain

$$
x(t) = At x(0) \quad \text{for } t = 0, 1, 2, \ldots.
$$

• Special case
$$
A(t) = A
$$
 for all t .

- Choose equal blocks $B = A^r$ for some $r \geq 1$.
- Block intensity *α*(B) *>* 0
- Sequence of $A(t)$'s is blockwise scrambling if power A^r is scrambling

Proposition

Convergence to consensus for each $x(0) \Leftrightarrow A$ power of A is scrambling

• Both principles are true

Contents

[Introduction](#page-2-0)

• [Mathematical Framework](#page-5-0)

[Main Results](#page-11-0)

[Applications](#page-21-0)

- [Data Segmentation and Clustering by a Macroscope](#page-21-0)
- [Swarm Dynamics](#page-26-0)

[Further Topics](#page-28-0)

- [Agent Specific Confidence Levels](#page-28-0)
- [Dependence of Consensus on the Confidence](#page-31-0)

Theorem A

Theorem (Theorem A)

- (i) Any multiagent system in any dimension converges to a consensus x^* if the sequence of $A(t)'s$
	- is blockwise scrambling
	- the block intensity rules applies
- (ii) If in addition
	- length's of blocks are bounded by some m
	- min⁺ $A(t)$ > α > 0 for all t
	- sequence of blocks covers N

then convergence to x^* is exponentially fast:

$$
||x^* - x^i(t)|| \le c(m, \alpha, t) \max_{j,k \in \mathbb{N}} ||x^j(0) - x^k(0)|| \quad \forall t \in \mathbb{N}_0, \forall i \in \mathbb{N},
$$

where $c(m, \alpha, t) = (1 - \alpha^m)^{t/m-1}$.

Theorem A

Corollary

For opinion dynamics under bounded confidence $(\epsilon > 0, x(0)$ given), the system converges to consensus exponentially fast with c(n − 1*,* ¹*/*n*,*t) and in **finite time** if $x(t)$ is an ε -net for all t.

Definition (*ε*-net)

A sequence (x^1, x^2, \ldots, x^n) for $x^i \in \mathbb{R}^d$ is called an ε -net if for any $i, j \in \mathbb{N}$, there exist $i_1, i_2, \ldots, i_k \in \mathbb{N}$ with $i = i_1$ and $j = i_k$, such that

$$
||x^{i_1}-x^{i_2}||\leq \varepsilon,\ldots,||x^{i_{k-1}}-x^{i_k}||\leq \varepsilon.
$$

• In case of $d = 1$, $x_1 \le x_2 \le \cdots \le x_n$: $\max_{1 \le i \le n-1} ||x_{i+1} - x_i|| \le \varepsilon$.

Idea of the proof for Theorem A

Tools

• Row-stochastic $n \times n$ -matrix A

• **Ergodic coefficient**
$$
c(A) := 1 - \min_{i,j} \sum_{k=1}^{n} \min\{a_{ik}, a_{jk}\}.
$$

Steps

•
$$
c(A)
$$
 is the smallest $c \in [0,1]$, such that

$$
\Delta(Ax) \leq c \cdot \Delta x \quad \text{for all } x = (x^1, \dots, x^n) \text{ with } x^i \in \mathbb{R}^d.
$$

$$
(\Delta x = \max_{i,j \in \mathbb{N}} ||x^i - x^j||)
$$

- \bullet A scrambling \Leftrightarrow $c(A) < 1$ \Leftrightarrow $c(A) \le 1 \min^+ A$.
- Then $\Delta x(t) = \exp \left(-\sum_{k} \min^{+} B_{k}(t)\right) \Delta x(0)$
- Block intensity rule \Rightarrow $\lim_{t\to\infty} \Delta x(t) = 0.$

Idea of the proof for the Corollary

- A(t) given by $a_{ij}(t) = \begin{cases} (\# I(i, x(t)))^{-1}, & \text{if } j \in I(i, x(t)) \\ 0, & \text{otherwise} \end{cases}$ 0*,* otherwise \Rightarrow A(t) has positive diagonal with min⁺ A(t) ≥ $\frac{1}{n}$ $x(t) \varepsilon$ -net (for all t) \Rightarrow Product of $(n-1)$ $A(t)'$ s scrambling • Finite time: $\Delta x(t) \rightarrow 0$ for $t \rightarrow \infty$. \Rightarrow after some t_0 each agent has all others as neighbours
	- \Rightarrow x(t) stays constant for $t \ge t_0 + 1$

[Main Results](#page-11-0)

Simulations for 1D and 2D — Fragmentation

Figure: $n = 50$ agents in one dimension, start with a uniform random distribution, $\varepsilon = 0.1$, fragmentation at $T = 6$.

Figure: $n = 250$ agents in two dimensions, start with a uniform random distribution, $\varepsilon = 0.15$, fragmentation at $T = 7$.

Reciprocal Interation

• Splitting can be achieved by reciprocal interaction.

Definition

A row-stochastic $n \times n$ -matrix, where $a_{ij}^{(h)}$ is the the entry of A^h , is **reciprocal** if it has a positive diagonal and for all $i, j \in \mathbb{N}$, it holds that

$$
a_{ij}^{(h)} > 0 \text{ for some } h \quad \Rightarrow \quad a_{ji}^{(k)} > 0 \text{ for some } k.
$$

• The multiagent system is reciprocal if $A(t)$ is a reciprocal matrix for each t.

Theorem B

Theorem (Theorem B)

Let a multiagent system be reciprocal and min⁺ $A(t)$ $> \alpha$ > 0 for all t. Then fragmentation of opinions holds in any dimension in the sense that

(i) N is the disjoint union of groups $N(k)$ with $1 \leq k \leq m$ and there exists t_0 , such that for agents i and j in different groups it holds that $a_{ii}(t) = 0$ for $t > t_0$.

(ii)
$$
\lim_{t\to\infty} x^i(t) = c_k
$$
 for all $i \in N(k)$ for each k.

Corollary

Theorem B holds for any system of opinion dynamics under bounded confidence. The process becomes stationary in **finite time**.

Idea of the proof for Theorem B

- Equivalence relation "∼" in N: For i*,* j ∈ N, we define
	- $i\rightarrow j$: For each t there exists $t'\geq t$ with $a_{ij}(t')>0$
	- $i \rightarrow j$: There exist $i_1, \ldots, i_r \in \mathbb{N}$ with $i \rightarrow i_1 \rightarrow \cdots \rightarrow i_r \rightarrow j$

$$
\bullet\ \ i \sim j\colon\ i \twoheadrightarrow j\ \text{and}\ j \twoheadrightarrow i
$$

- "∼" is reflexive, transitive and symmetric
- P equivalence class of $p \in \mathbb{N}$
- There exists a splitting time t_0 such that

 $i \in P$, $j \notin P \Rightarrow a_{ii}(t) = 0$ for $t \ge t_0$

 \Rightarrow A(t) can be restricted to P for $t \ge t_0$ and there blockwise scrambling.

 \bullet A(t) reciprocal needed, a.o., for the block intensity rule.

Literature for both Theorems and the Corollaries

Based on joint work with Rainer Hegselmann since 2002

- **•** Ulrich Krause. *Positive Dynamical Systems in Discrete Time Theory,* Models and Applications. Berlin, München, Boston: De Gruyter, 2015. ISBN: 9783110365696. doi: [10.1515/9783110365696](https://doi.org/10.1515/9783110365696) Chapter 8 on "Dynamics of interaction: Opinions, mean maps, multi-agent coordination and swarms".
- Rainer Hegselmann and Ulrich Krause. "Consensus and Fragmentation of Opinions with a Focus on Bounded Confidence". In: The American Mathematical Monthly 126.8 (2019), pp. 700-716. DOI: [10.1080/00029890.2019.1626685](https://doi.org/10.1080/00029890.2019.1626685)
- Julien M. Hendrickx and John N. Tsitsiklis. "A new condition for convergence in continuous-time consensus seeking systems". In: 2011 50th IEEE Conference on Decision and Control and European Control Conference. 2011, pp. 5070-5075. DOI: [10.1109/CDC.2011.6160231](https://doi.org/10.1109/CDC.2011.6160231)

Contents

[Introduction](#page-2-0)

• [Mathematical Framework](#page-5-0)

[Main Results](#page-11-0)

³ [Applications](#page-21-0)

- [Data Segmentation and Clustering by a Macroscope](#page-21-0)
- [Swarm Dynamics](#page-26-0)

[Further Topics](#page-28-0)

- [Agent Specific Confidence Levels](#page-28-0)
- [Dependence of Consensus on the Confidence](#page-31-0)

Microscope and Macroscope

Point Clouds

- How to aggregate or bundling data in a consistent manner? No law of distribution known.
- Taking a mean-arithmetic or geometric or...?
- Local means versus global mean?

Microscope

Successive discrimination of data by increasing **re-solution**

Macrosope

Successive bundling of data by increasing **con-solution**

Construction of a Macroscope

- **•** Bundling of data by using opinion dynamics under bounded confidence
- **Data collection** $x = (x^1, x^2, \dots, x^n)$ with $x^i \in D$ space of data in \mathbb{R}^d
- **•** $z \in \mathbb{R}_+$ scale of consolution / confidence level

From the Corollary to Theorem B

- $f:D^n\times\mathbb{R}_+\to D^n$ with $y=f(x,\varepsilon)$ defined by $y^i=x^i(\mathcal{T})$ for the process $x(t)$ given by $x(0), \varepsilon$ and becoming stationary in finite time T.
- **Macroscope** $M: D^n \to D^n$ for data space D defined by $M(x) = f(x, m(x))$.
- **Scale** $\varepsilon = m(x) = \min\{\|x^i x^j\| : i, j \in \mathbb{N} \text{ with } x^i \neq x^j\}$
- Scale changes with x

Properties of the Macroscope

Increasing Consolution

$$
\bullet \ \ m(M(x)) > 0 \quad \Rightarrow \quad m(x) < m(M(x))
$$

Robustness

$$
\bullet \ \ m(x) \leq \varepsilon < m(M(x)) \quad \Rightarrow \quad f(\varepsilon, M(x)) = M(x)
$$

Macroscope Algorithm MAC

 $M: D^n \to D^n$ with $M(x) = f(x, m(x))$ can be iterated

- $x \in D^n$ single data nothing to bundle \texttt{stop} otherwise $m(x) > 0$, $f(x, \varepsilon) = x$ for $0 \le \varepsilon < m(x)$ go to $M(x) = f(x, m(x))$
- \bullet $M(x)$ single data stop otherwise $m(M(x)) > m(x)$, $f(M(x), \varepsilon) = M(x)$ for $m(x) < \varepsilon < m(M(x))$ go to $M^2(x) = M(M(x)),$ etc.

Question

• Implementation on a computer?

Example of MAC

Contents

[Introduction](#page-2-0)

• [Mathematical Framework](#page-5-0)

[Main Results](#page-11-0)

- [Data Segmentation and Clustering by a Macroscope](#page-21-0)
- **•** [Swarm Dynamics](#page-26-0)

[Further Topics](#page-28-0)

- [Agent Specific Confidence Levels](#page-28-0)
- [Dependence of Consensus on the Confidence](#page-31-0)

Application to Swarm Dynamics

- \bullet Bernard Chazelle. "The Total s-Energy of a Multiagent System". In: SIAM Journal on Control and Optimization 49.4 (2011), pp. 1680–1706. DOI: [10.1137/100791671](https://doi.org/10.1137/100791671)
- Ulrich Krause. Positive Dynamical Systems in Discrete Time Theory, Models and Applications. Berlin, München, Boston: De Gruyter, 2015. ISBN: 9783110365696. doi: [10.1515/9783110365696](https://doi.org/10.1515/9783110365696) Chapter 8.6
- **Eitan Tadmor. Emergent Behavior in Collective Dynamics. Gibbs Lecture of** the AMS. Apr. 2022 . URL: <https://www.youtube.com/watch?v=AenZz6Ooj2g> Cucker-Smale Model of Swarm Dynamics

Contents

- **[Introduction](#page-2-0)**
	- **[Mathematical Framework](#page-5-0)**
- [Main Results](#page-11-0)
- **[Applications](#page-21-0)**
	- [Data Segmentation and Clustering by a Macroscope](#page-21-0)
	- [Swarm Dynamics](#page-26-0)

⁴ [Further Topics](#page-28-0)

- [Agent Specific Confidence Levels](#page-28-0)
- [Dependence of Consensus on the Confidence](#page-31-0)

Agent Specific Confidence Levels

- Opinion dynamics under bounded confidence for $d = 1$
- **•** Confidence set $I(i, x) = \{1 \leq i \leq n : ||x_i x_i|| \leq \varepsilon_i\}$ for $1 \leq i \leq n$.
- Level of confidence dependent on agent *i*.

Question

• What can be said about consensus (Theorem A) and fragmentation (Theorem B)?

Agent Specific Confidence Levels

Literature

- Jan Lorenz. "Heterogeneous bounds of confidence: Meet, discuss and find consensus!" In: Complexity 15.4 (2010), pp. 43–52
	- Treats by simulation two different levels *ε < ε*′ .
	- Surprising result: Consens neither for *ε* nor for *ε* ′ in the homogeneous case but consensus if some agents use *ε*, the other ones *ε* ′ .
- Anahita Mirtabatabaei and Francesco Bullo. "Opinion Dynamics in Heterogeneous Networks: Convergence Conjectures and Theorems". In: SIAM Journal on Control and Optimization 50.5 (2012), pp. 2763–2785
	- A detailed mathematical analysis for ε_i for $1 \le i \le n$.
	- Main conjecture: Trajectory of each agent converges in finite time. Still an **open problem**, however:
		- Numerical evidence by simulations
		- Sufficient conditions are derived for the conjecture to hold true

Contents

- **[Introduction](#page-2-0)**
	- **[Mathematical Framework](#page-5-0)**
- [Main Results](#page-11-0)
- **[Applications](#page-21-0)**
	- [Data Segmentation and Clustering by a Macroscope](#page-21-0)
	- [Swarm Dynamics](#page-26-0)

⁴ [Further Topics](#page-28-0)

- [Agent Specific Confidence Levels](#page-28-0)
- [Dependence of Consensus on the Confidence](#page-31-0)

- **Ongoing work with Rainer Hegselmann and Malte Sieveking**
- Opinion dynamics under bounded confidence, one dimension
- \bullet x(0) and ε (uniform) given, x(0) fixed in the following
- Theorem A on consensus, Theorem B on fragmentation

Question

Can a change of *ε* lead from one to the other, especially

Consensus for ε and $\varepsilon < \varepsilon' \implies$ Consensus for ε'

Regarding the simple examples of the first Section: **NOT** for n ≤ 4*.*

First Results

• R. Hegselmann found by computer simulations:

- **YES** for n ≥ 5
- Consensus may break for higher confidence
- Number of breaks increase with *n*
- M. Sieveking found analytically an example for

$$
n=5: x(0) = (0, 0.18, 0.36, 0.68, 1)
$$

Thus, more confidence may lead to dissent! Question

• How often does that happen – can breaks even accumulate?

• Call ε **robust** is there is an open neighbourhood $U(\varepsilon)$ of ε (in $[0,\infty)$), such that for $\varepsilon' \in U(\varepsilon)$ the processes for ε' and ε do coincide $(x(0))$ given).

Theorem

- (i) The set E of robust ε is open and dense in $[0,\infty)$.
- The set of non-robust *ε* equals the boundary of E, which consists of isolated points.
- (iii) The set of non-robust *ε* is finite.

• In particular, there are only finitely many breaks and breaks cannot accumulate.

*ε*1*, . . . , ε*^k non-robust *ε,* especially breaks or changes from dissent to consensus.

Questions

- How does the number of non-robust *ε* (especially of breaks / phase transitions) depend on n?
- Is the Theorem true in higher dimensions?

Many thanks to Pascal Fernsel for his great help in preparing this presentation.

Thank you for your attention!