Opinion Dynamics Questions, Answers, and further Questions

Ulrich Krause

Talk at the

University of Avignon Laboratoire Informatique d'Avignon

October 21, 2022

Contents

Introduction

Mathematical Framework

Main Results

Applications

- Data Segmentation and Clustering by a Macroscope
- Swarm Dynamics

4 Further Topics

- Agent Specific Confidence Levels
- Dependence of Consensus on the Confidence

Simple Examples

Examples of scalar opinions of *n* agents with confidence level ε .

 $\varepsilon < a$ dissent forever, $\varepsilon \geq a$ consensus in next period by arithmetical mean

Simulation for six Agents

Figure: n = 6 agents, equally spaced with $\varepsilon = 0.2$, two clusters of size 3, freezing time T = 6.

First Results

Question: Any *n*, agents equally spaced by ε ?

• Peter Hegarty and Edvin Wedin. "The Hegselmann-Krause dynamics for equally spaced agents". In: *Journal of Difference Equations and Applications* 22.11 (2016), pp. 1621–1645

Case: $n = 6k + \ell$, $0 \le \ell \le 5$, equally spaced by ε

- After every fifth time step 3 agents will be disconnected from either end and then collaps to a cluster in the next time step.
- After finite time the final confirmation consists of 2k clusters of size 3.
- Proof not trivial

Question: What if agents are not equally spaced?

- Case: $n \le 4$: consensus \Leftrightarrow max difference at t = 0 between neighbours $\le \varepsilon$.
- This is not true for $n \ge 5$ (not obvious).

Contents

Introduction

• Mathematical Framework

2 Main Results

3 Applications

- Data Segmentation and Clustering by a Macroscope
- Swarm Dynamics

Further Topics

- Agent Specific Confidence Levels
- Dependence of Consensus on the Confidence

Bounded Confidence Model in Higher Dimensions

• Agents 1, 2, . . . , *n*

Opinion Profile

- Opinion profile of agent *i* at time t = 0, 1, 2, ... given by $(x^1(t), x^2(t), ..., x^n(t))$
- *d*-dimensional opinions $x^i(t) \in \mathbb{R}^d$ with *d* aspects

Confidence Set

• Confidence set of agent *i* for confidence level ε and profile $x = (x^1, x^2, \dots, x^n)$ given by

$$I(i,x) = \{1 \le j \le n \mid ||x^i - x^j|| \le \varepsilon\}.$$

• $\|\cdot\|$ norm on \mathbb{R}^d .

Dynamics

•
$$x^{i}(t+1) = rac{1}{\#l(i,x(t))} \cdot \sum_{j \in l(i,x(t))} x^{j}(t)$$

= arithmetical mean of all agents in the confidence

set of agent i

Ulrich Krause (University of Bremen)

Bounded Confidence Model in Higher Dimensions

Matrix Model

- $x(t+1) = A(x(t)) \cdot x(t)$ with $a_{ij}(x) = \begin{cases} \frac{1}{\#I(i,x)}, & \text{for } j \in I(i,x) \\ 0, & \text{otherwise} \end{cases}$
- Dynamics state dependent on x(t), nonlinear

More General Setting

- Multiagent system in higher dimensions
- $x(t+1) = A(t) \cdot x(t)$ with $x(0) \in (\mathbb{R}^d)^n$, t = 0, 1, 2, ...
- A(t) row-stochastic $n \times n$ -matrix with $a_{ij}(t) \ge 0$ and $\sum_{j=1}^{n} a_{ij}(t) = 1$.
- Positive dynamical system in discrete time, time-variant

Main Questions

- A. Convergence of consensus $x^* = \lim_{t \to \infty} x^i(t)$ for $i \in \mathbb{N}$?
- B. Convergence at all if yes, to what limit pattern?

Simulations for 1D and 2D — Consensus

Figure: n = 50 agents in one dimension, start with a uniform random distribution, $\varepsilon = 0.25$, consensus at T = 6.

Figure: n = 250 agents in two dimensions, start with a uniform random distribution, $\varepsilon = 0.25$, consensus at T = 21.

Two Principles Considering Questions A and B

• Sequence of row-stochastic $n \times n$ -matrices A(t) for t = 0, 1, 2, ...

The structure of interaction is not too weak

- Principle of the third agent
- Define block $B \coloneqq A(t) \cdot A(t-1) \cdots \cdot A(s)$ for $s \leq t$
- B is scrambling if for $i, j \in \mathbb{N}$ there exists a third agent k such that $b_{ik} > 0$ and $b_{jk} > 0$
- The sequence of A(t)'s is **blockwise scrambling** if there are infinitely many scrambling blocks

The intensity of interaction is not too small

- Define intensity: $\alpha(B) = (\text{smallest positive entry of block } B)$.
- Block intensity rule: $\sum_{B \in \varphi_s} \alpha(B)$ unbounded for a sequence φ_s of blocks

Example

Markov chain

$$x(t) = A^t x(0)$$
 for $t = 0, 1, 2, ...$

• Special case
$$A(t) = A$$
 for all t .

- Choose equal blocks $B = A^r$ for some $r \ge 1$.
- Block intensity α(B) > 0
- Sequence of A(t)'s is blockwise scrambling if power A^r is scrambling

Proposition

Convergence to consensus for each $x(0) \Leftrightarrow A$ power of A is scrambling

• Both principles are true

Contents

Introduction

• Mathematical Framework

Main Results

3 Applications

- Data Segmentation and Clustering by a Macroscope
- Swarm Dynamics

Further Topics

- Agent Specific Confidence Levels
- Dependence of Consensus on the Confidence

Theorem A

Theorem (Theorem A)

- (i) Any multiagent system in any dimension converges to a consensus x* if the sequence of A(t)'s
 - is blockwise scrambling
 - the block intensity rules applies
- (ii) If in addition

wh

- length's of blocks are bounded by some m
- $\min^+ A(t) \ge \alpha > 0$ for all t
- $\bullet\,$ sequence of blocks covers $\mathbb N$

then convergence to x^* is exponentially fast:

$$\|x^* - x^i(t)\| \leq c(m, \alpha, t) \max_{j,k \in \mathbb{N}} \|x^j(0) - x^k(0)\| \quad orall t \in \mathbb{N}_0, orall i \in \mathbb{N},$$
 where $c(m, \alpha, t) = (1 - \alpha^m)^{t/m - 1}.$

Theorem A

Corollary

For opinion dynamics under bounded confidence ($\varepsilon > 0, x(0)$ given), the system converges to consensus exponentially fast with c(n-1, 1/n, t) and in **finite time** if x(t) is an ε -net for all t.

Definition (ε -net)

A sequence (x^1, x^2, \ldots, x^n) for $x^i \in \mathbb{R}^d$ is called an ε -net if for any $i, j \in \mathbb{N}$, there exist $i_1, i_2, \ldots, i_k \in \mathbb{N}$ with $i = i_1$ and $j = i_k$, such that

$$\|x^{i_1}-x^{i_2}\|\leq \varepsilon,\ldots,\|x^{i_{k-1}}-x^{i_k}\|\leq \varepsilon.$$

• In case of d = 1, $x_1 \le x_2 \le \cdots \le x_n$: $\max_{1 \le i \le n-1} \|x_{i+1} - x_i\| \le \varepsilon$.

Idea of the proof for Theorem A

Tools

• Row-stochastic $n \times n$ -matrix A

• Ergodic coefficient
$$c(A) \coloneqq 1 - \min_{i,j} \sum_{k=1}^{n} \min\{a_{ik}, a_{jk}\}.$$

Steps

•
$$c(A)$$
 is the smallest $c \in [0,1]$, such that

$$\Delta(Ax) \le c \cdot \Delta x$$
 for all $x = (x^1, \dots, x^n)$ with $x^i \in \mathbb{R}^d$.
 $\left(\Delta x = \max_{i,j \in \mathbb{N}} \|x^i - x^j\|\right)$

- A scrambling \Leftrightarrow $c(A) < 1 \Leftrightarrow$ $c(A) \le 1 \min^+ A$.
- Then $\Delta x(t) = \exp\left(-\sum_k \min^+ B_k(t)\right) \Delta x(0)$
- Block intensity rule $\Rightarrow \lim_{t \to \infty} \Delta x(t) = 0.$

Idea of the proof for the Corollary

A(t) given by a_{ij}(t) = {(#I(i, x(t)))⁻¹, if j ∈ I(i, x(t)) 0, otherwise
⇒ A(t) has positive diagonal with min⁺ A(t) ≥ 1/n
x(t) ε-net (for all t) ⇒ Product of (n - 1) A(t)'s scrambling
Finite time: Δx(t) → 0 for t → ∞.
⇒ after some t₀ each agent has all others as neighbours
⇒ x(t) stays constant for t ≥ t₀ + 1 Main Results

Simulations for 1D and 2D — Fragmentation

Figure: n = 50 agents in one dimension, start with a uniform random distribution, $\varepsilon = 0.1$, fragmentation at T = 6.

Figure: n = 250 agents in two dimensions, start with a uniform random distribution, $\varepsilon = 0.15$, fragmentation at T = 7.

Reciprocal Interation

• Splitting can be achieved by reciprocal interaction.

Definition

A row-stochastic $n \times n$ -matrix, where $a_{ij}^{(h)}$ is the the entry of A^h , is **reciprocal** if it has a positive diagonal and for all $i, j \in \mathbb{N}$, it holds that

$$a_{ij}^{(h)} > 0$$
 for some $h \Rightarrow a_{ji}^{(k)} > 0$ for some k .

• The multiagent system is reciprocal if A(t) is a reciprocal matrix for each t.

Theorem B

Theorem (Theorem B)

Let a multiagent system be reciprocal and $\min^+ A(t) \ge \alpha > 0$ for all t. Then fragmentation of opinions holds in any dimension in the sense that

(i) N is the disjoint union of groups N(k) with $1 \le k \le m$ and there exists t_0 , such that for agents i and j in different groups it holds that $a_{ij}(t) = 0$ for $t \ge t_0$.

(ii)
$$\lim_{t\to\infty} x^i(t) = c_k$$
 for all $i \in N(k)$ for each k.

Corollary

Theorem B holds for any system of opinion dynamics under bounded confidence. The process becomes stationary in **finite time**.

Idea of the proof for Theorem B

- Equivalence relation " \sim " in \mathbb{N} : For $i, j \in \mathbb{N}$, we define
 - $i \rightarrow j$: For each t there exists $t' \ge t$ with $a_{ij}(t') > 0$
 - $i \twoheadrightarrow j$: There exist $i_1, \ldots i_r \in \mathbb{N}$ with $i \to i_1 \to \cdots \to i_r \to j$
 - $i \sim j$: $i \twoheadrightarrow j$ and $j \twoheadrightarrow i$
- $\bullet~``\sim``$ is reflexive, transitive and symmetric
- P equivalence class of $p \in \mathbb{N}$
- There exists a splitting time t₀ such that

 $i \in P, j \notin P \Rightarrow a_{ij}(t) = 0 \text{ for } t \geq t_0$

 \Rightarrow A(t) can be restricted to P for $t \ge t_0$ and there blockwise scrambling.

• A(t) reciprocal needed, a.o., for the block intensity rule.

Literature for both Theorems and the Corollaries

Based on joint work with Rainer Hegselmann since 2002

- Ulrich Krause. Positive Dynamical Systems in Discrete Time Theory, Models and Applications. Berlin, München, Boston: De Gruyter, 2015. ISBN: 9783110365696. DOI: 10.1515/9783110365696
 Chapter 8 on "Dynamics of interaction: Opinions, mean maps, multi-agent coordination and swarms".
- Rainer Hegselmann and Ulrich Krause. "Consensus and Fragmentation of Opinions with a Focus on Bounded Confidence". In: *The American Mathematical Monthly* 126.8 (2019), pp. 700–716. DOI: 10.1080/00029890.2019.1626685
- Julien M. Hendrickx and John N. Tsitsiklis. "A new condition for convergence in continuous-time consensus seeking systems". In: 2011 50th IEEE Conference on Decision and Control and European Control Conference. 2011, pp. 5070–5075. DOI: 10.1109/CDC.2011.6160231

Contents

- Introduction
 - Mathematical Framework

2 Main Results

3 Applications

- Data Segmentation and Clustering by a Macroscope
- Swarm Dynamics

Further Topics

- Agent Specific Confidence Levels
- Dependence of Consensus on the Confidence

Microscope and Macroscope

Point Clouds

- How to aggregate or bundling data in a consistent manner? No law of distribution known.
- Taking a mean-arithmetic or geometric or...?
- Local means versus global mean?

Microscope

• Successive discrimination of data by increasing re-solution

Macrosope

• Successive bundling of data by increasing con-solution

Construction of a Macroscope

- Bundling of data by using opinion dynamics under bounded confidence
- Data collection $x = (x^1, x^2, \dots, x^n)$ with $x^i \in D$ space of data in \mathbb{R}^d
- $z \in \mathbb{R}_+$ scale of consolution / confidence level

From the Corollary to Theorem B

- $f: D^n \times \mathbb{R}_+ \to D^n$ with $y = f(x, \varepsilon)$ defined by $y^i = x^i(T)$ for the process x(t) given by $x(0), \varepsilon$ and becoming stationary in finite time T.
- Macroscope $M : D^n \to D^n$ for data space D defined by M(x) = f(x, m(x)).
- Scale $\varepsilon = m(x) = \min\{||x^i x^j|| : i, j \in \mathbb{N} \text{ with } x^i \neq x^j\}$
- Scale changes with x

Properties of the Macroscope

Increasing Consolution

•
$$m(M(x)) > 0 \Rightarrow m(x) < m(M(x))$$

Robustness

•
$$m(x) \leq \varepsilon < m(M(x)) \Rightarrow f(\varepsilon, M(x)) = M(x)$$

Macroscope Algorithm MAC

 $M: D^n o D^n$ with M(x) = f(x, m(x)) can be iterated

- $x \in D^n$ single data nothing to bundle stop otherwise m(x) > 0, $f(x, \varepsilon) = x$ for $0 \le \varepsilon < m(x)$ go to M(x) = f(x, m(x))
- M(x) single data stop otherwise m(M(x)) > m(x), $f(M(x), \varepsilon) = M(x)$ for $m(x) \le \varepsilon < m(M(x))$ go to $M^2(x) = M(M(x))$, etc.

Question

• Implementation on a computer?

Example of MAC

Contents

- - Mathematical Framework

- Data Segmentation and Clustering by a Macroscope
- Swarm Dynamics

- Agent Specific Confidence Levels
- Dependence of Consensus on the Confidence

Application to Swarm Dynamics

- Bernard Chazelle. "The Total s-Energy of a Multiagent System". In: SIAM Journal on Control and Optimization 49.4 (2011), pp. 1680–1706. DOI: 10.1137/100791671
- Ulrich Krause. Positive Dynamical Systems in Discrete Time Theory, Models and Applications. Berlin, München, Boston: De Gruyter, 2015. ISBN: 9783110365696. DOI: 10.1515/9783110365696 Chapter 8.6
- Eitan Tadmor. Emergent Behavior in Collective Dynamics. Gibbs Lecture of the AMS. Apr. 2022. URL: https://www.youtube.com/watch?v=AenZz6Ooj2g Cucker-Smale Model of Swarm Dynamics

Contents

- Introduction
 - Mathematical Framework
- 2 Main Results
- 3 Applications
 - Data Segmentation and Clustering by a Macroscope
 - Swarm Dynamics

4 Further Topics

- Agent Specific Confidence Levels
- Dependence of Consensus on the Confidence

Agent Specific Confidence Levels

- Opinion dynamics under bounded confidence for d = 1
- Confidence set $I(i, x) = \{1 \le j \le n : ||x_i x_j|| \le \varepsilon_i\}$ for $1 \le i \le n$.
- Level of confidence dependent on agent *i*.

Question

• What can be said about consensus (Theorem A) and fragmentation (Theorem B)?

Agent Specific Confidence Levels

Literature

- Jan Lorenz. "Heterogeneous bounds of confidence: Meet, discuss and find consensus!" In: *Complexity* 15.4 (2010), pp. 43–52
 - Treats by simulation two different levels $\varepsilon < \varepsilon'$.
 - Surprising result: Consens neither for ε nor for ε' in the homogeneous case but consensus if some agents use ε, the other ones ε'.
- Anahita Mirtabatabaei and Francesco Bullo. "Opinion Dynamics in Heterogeneous Networks: Convergence Conjectures and Theorems". In: SIAM Journal on Control and Optimization 50.5 (2012), pp. 2763–2785
 - A detailed mathematical analysis for ε_i for $1 \le i \le n$.
 - Main conjecture: Trajectory of each agent converges in finite time. Still an open problem, however:
 - Numerical evidence by simulations
 - Sufficient conditions are derived for the conjecture to hold true

Contents

- Introduction
 - Mathematical Framework
- 2 Main Results
- 3 Applications
 - Data Segmentation and Clustering by a Macroscope
 - Swarm Dynamics

4 Further Topics

- Agent Specific Confidence Levels
- Dependence of Consensus on the Confidence

- Ongoing work with Rainer Hegselmann and Malte Sieveking
- Opinion dynamics under bounded confidence, one dimension
- x(0) and ε (uniform) given, x(0) fixed in the following
- Theorem A on consensus, Theorem B on fragmentation

Question

 $\bullet\,$ Can a change of ε lead from one to the other, especially

 $\mbox{Consensus for } \varepsilon \mbox{ and } \varepsilon < \varepsilon' \quad \stackrel{?}{\Longrightarrow} \quad \mbox{Consensus for } \varepsilon' \\$

• Regarding the simple examples of the first Section: **NOT** for $n \leq 4$.

First Results

• R. Hegselmann found by computer simulations:

- YES for n ≥ 5
- Consensus may break for higher confidence
- Number of breaks increase with n
- M. Sieveking found analytically an example for (0, 0, 18, 0, 26, 0, 62, 1)

$$n = 5$$
: $x(0) = (0, 0.18, 0.36, 0.68, 1)$

• Thus, more confidence may lead to dissent! Question

• How often does that happen — can breaks even accumulate?

Call ε robust is there is an open neighbourhood U(ε) of ε (in [0,∞)), such that for ε' ∈ U(ε) the processes for ε' and ε do coincide (x(0) given).

Theorem

- (i) The set E of robust ε is open and dense in $[0,\infty)$.
- (ii) The set of non-robust ε equals the boundary of E, which consists of isolated points.
- (iii) The set of non-robust ε is finite.

• In particular, there are only finitely many breaks and breaks cannot accumulate.

• $\varepsilon_1, \ldots, \varepsilon_k$ non-robust ε , especially breaks or changes from dissent to consensus.

Questions

- How does the number of non-robust ε (especially of breaks / phase transitions) depend on *n*?
- Is the Theorem true in higher dimensions?

Many thanks to Pascal Fernsel for his great help in preparing this presentation.

Thank you for your attention!