Dynamic Social Learning Under Graph Constraints

K. Avrachenkov (Inria) V.S. Borkar, S. Moharir, S.M. Shah (IITB)

IEEE Trans. on Control of Network Systems, 9(3), 2021

GDR COSMOS, Avignon, 21/10/2022

Motivation

Motivation

There are m items to choose.

The reward in our model:

$$\left(\frac{\tilde{\mu}_i \times \#\{\text{item } i \text{ purchases}\}}{\#\{\text{total purchases}\}}\right)^{\alpha}, \quad \tilde{\mu}_i = \mu_i + \zeta_i, \quad i \in [m],$$

was inspired by

Shah, V., Blanchet, J., & Johari, R. Bandit learning with positive externalities. NeurIPS 2018.

This positive α -homogeneous reward captures 'positive reinforcement' (aka 'herding behaviour' or 'increasing returns') can be either concave or convex utility function.

Agents arrive one at a time. And let

 $\xi(n) = i$ if the *n*-th agent picks object *i*,

$$x_i(n) := \frac{\#\{\text{item } i \text{ purchases}\}}{n}, \ n \ge 1$$

is the fraction of agents who picked i till time n.

$$x_i(n+1) = x_i(n) + \frac{1}{n+1} \left(\mathbb{I}\{\xi(n+1) = i\} - x_i(n) \right), \quad (1)$$

with $x_i(0) = \frac{1}{m} \ \forall i$.

This can be viewed as a stochastic approximation iteration.

Graphical constraints: We assume that the choice in the (n+1)-st time slot is constrained by the choice made in the n-th slot.

E.g., given the present choice, only some selected 'nearby' or 'related' choices are recommended. (Of course, the complete graph is a particular case.)

We consider an undirected graph G = (V, E) where V, E are resp., its node and edge sets, with |V| = m; and assume that G is irreducible with self-loops.

Selection Policy: The agents choose items according to

$$\mathbb{P}(\xi(n+1)=j|\mathcal{F}_n)=(1-\varepsilon(n))\tilde{p}_{\xi(n)j}^{\alpha}(x(n))+\varepsilon(n)\chi_j(\xi(n)). \tag{2}$$

Here:

$$\tilde{p}_{ij}^{\alpha}(x) := \mathbb{I}\left\{j \in \mathcal{N}(i)\right\} \frac{f_j^{\alpha,n}(x)}{\sum_{l \in \mathcal{N}(i)} \hat{f}_l^{\alpha,n}(x)} , \qquad (3)$$

for $\hat{f}_i^{\alpha,n}(x) := (\hat{\mu}_i(n)x_i(n))^{\alpha}$, where

$$\hat{\mu}_{i}(n) := \frac{\sum_{k=0}^{n} \mathbb{I}\{\xi(k) = i\} \tilde{\mu}_{i}(k)}{\sum_{k=0}^{n} \mathbb{I}\{\xi(k) = i\}}$$

is the empirical estimate of μ_i at time \emph{n} recursively computed by

$$\hat{\mu}_i(n+1) = \Big(1 - rac{1}{S_i(n+1)}\Big)\hat{\mu}_i(n) + rac{ ilde{\mu}_i(n+1)}{S_i(n+1)}$$

if $\xi(n+1)=i$ and remains the same otherwise.

We first note that $\hat{\mu}_i(n) \to \mu_i$ a.s. $\forall i$.

Thus a.s., $\lim_{n\uparrow\infty}\hat{f}_i^{\alpha,n}(x)=f_i^{\alpha}(x):=(\mu_ix_i)^{\alpha}$ and

$$\lim_{n\uparrow\infty} \tilde{p}_{ij}^{\alpha}(x) = p_{ij}^{\alpha}(x) := \mathbb{I}\{j \in \mathcal{N}(i)\} \frac{f_j^{\alpha}(x)}{\sum_{l \in \mathcal{N}(i)} f_l^{\alpha}(x)}.$$

As $\alpha \downarrow 0$, the process approaches a standard random walk on the graph that picks a neighbor with equal probability.

As $\alpha \uparrow \infty$, the process at i will (asymptotically) pick the $j \in \mathcal{N}(i)$ for which $\mu_j x_j = \max_{k \in \mathcal{N}(i)} \mu_k x_k$, uniformly. I.e., the process will tend to select a neighbour item greedily.

We first analyze the convergence for fixed α by the standard stochastic approximation techniques based on limiting ODE.

Let $\varphi_i^{lpha}(x) := f_i^{lpha}(x) \sum_{j \in \mathcal{N}(i)} f_j^{lpha}(x) / x_i$ and consider the ODE

$$\dot{x}_i(t) = \frac{x_i(t)\varphi_i^{\alpha}(x(t))}{\sum_k x_k(t)\varphi_k^{\alpha}(x(t))} - x_i(t). \tag{4}$$

This is also the ODE limit for Vertex Reinforced Random Walk introduced by Pemantle and analyzed further by Benaim.

Note that every equilibrium of (4) satisfies the fixed point equation

$$\pi(i) = h_i(\pi) := \frac{f_i^{\alpha}(\pi) \sum_{j \in \mathcal{N}(i)} f_j^{\alpha}(\pi)}{\sum_k f_k^{\alpha}(\pi) \sum_{\ell \in \mathcal{N}(k)} f_\ell^{\alpha}(\pi)}, \quad \forall i \in [m]. \quad (5)$$

There can be more than one equilibrium point.

Further note that ODE (4) has the same trajectories and the same asymptotic behavior as

$$\dot{z}_i(t) = z_i(t) \left(\varphi_i^{\alpha}(z(t)) - \sum_j z_j(t) \varphi_j^{\alpha}(z(t)) \right), \quad (6)$$

i.e., $z(t) = x(\tau(t))$ for some $t \in [0, \infty) \mapsto \tau(t) \in [0, \infty)$ which is strictly increasing and satisfies $t \uparrow \infty \iff \tau(t) \uparrow \infty$.

Now we recognize that ODE (6) is the replicator dynamics.

Let $A := [[a_{ij}]]_{i,j \in \mathcal{V}}$ be the (symmetric) adjacency matrix of G. Then, for $x = [x_1, \cdots, x_m] \in \mathcal{S}_m$,

$$\varphi_i^{\alpha}(x) = \frac{\partial}{\partial x_i} \Psi^{\alpha}(x) \text{ for } \Psi^{\alpha}(x) := \frac{1}{2\alpha} \sum_{i,j} a_{ij} f_i^{\alpha}(x) f_j^{\alpha}(x).$$

Thus (6) corresponds to the replicator dynamics for a potential game with potential $-\Psi^{\alpha}$.

We make the following technical, generically true, assumption: The equilibrium points (5) are isolated and hyperbolic, i.e., the Jacobian matrix of h at these points does not have eigenvalues on the imaginary axis.

Theorem

For each $\alpha>0$, the local maxima of $\Psi^{\alpha}:\mathcal{S}_{m}\mapsto\mathbb{R}$ are stable equilibria of (4) and the iterates of (1) converge to the set thereof, almost surely. In particular, the probability of convergence of $\{x(n)\}$ in (1) to any local maximum of Ψ^{α} in \mathcal{S}_{m} is strictly positive.

Convergence analysis (annealed dynamics)

Taking inspiration from 'simulated annealing', let us now slowly increase α or equivalently slowly decrease the 'temperature' $T(n) = 1/\alpha(n)$ as follows:

$$T(n+1) = (1-b(n))T(n), \ n \ge 0, \tag{7}$$

where $1 > b(n) \downarrow 0$ are stepsizes satisfying

$$\sum_{n} b(n) = \infty, \ nb(n) \stackrel{n\uparrow\infty}{\to} 0, \ b(n) = o(c(n)). \tag{8}$$

The second condition implies $\sum_{n} b(n)^2 < \infty$.

Convergence analysis (annealed dynamics)

A behavioral interpretation is that the agents exhibit a herd behavior, weighing in public opinion more and more with time.

Let

$$D:=\{i\in V: \mu_i=\max_j\mu_j\}.$$

Theorem

$$\sum_{i \in D} x_i(n) \to 1$$
 a.s.

The proof is based on stochastic approximation technique with multiple time scales.

The case of complete graph

In the case of complete graph (no graphical constraints),

$$\Psi^{\alpha}(x) = \left(\sum_{i} f_{i}^{\alpha}(x)\right)^{2},$$

is convex for $\alpha > 1$. Nice observation...

However, for $\alpha \in (0,1)$, the problem is equivalent to max $\sum_i f_i^{\alpha}(x)$, which is strictly concave and we can say more.

The case of complete graph

For $\alpha \in (0,1)$, using the Lagrange multiplier technique, we can even obtain an explicit expression for the unique stationary point:

$$x_i(\infty) = \frac{\mu_i^{\alpha/(1-\alpha)}}{\sum_{k=1}^m \mu_k^{\alpha/(1-\alpha)}}.$$
 (9)

From (9), as $\alpha \to 1$, the frequencies $x_i(\infty)$ start to concentrate on D.

Let us illustrate the importance of annealing for convergence of x(n) to D.

Consider a graph composed of two cliques (2 and 8 nodes) connected through a single edge.

We set $\mu_i = 1$ for $i \in \text{clique-1}$ and $\mu_i = 0.5$ for $i \in \text{clique-2}$.

Cooling schedule:

$$\alpha(n+1) = \alpha(n) \left(1 - \frac{1}{n \log n}\right)^{-1}$$

Trembling hand parameter:

$$\varepsilon(n) = \frac{1}{\log(n+1)}$$

Some points to note:

- If we initialize the walk in clique-2 and *do not* increase $\alpha \to \infty$, then the relative frequencies converge to non-zero values for nodes in clique-2. (We have set $\alpha=10$.)
- ▶ If we initialize the walk in clique-2 and do increase $\alpha \to \infty$, then the chain moves to clique-1 and stays there.

(a) Initialize in clique-2, α fixed. (b) Initialize in clique-2, $\alpha \to \infty$.

Figure: Fraction of Total Visits, x(n) Vs. Iteration Count for the two clique experiment

For the unconstrained case, we have tried $\mu = (2, \frac{1}{4}, \frac{1}{2}, 1)$ with the fixed $\alpha = 0.85 < 1$.

The dynamics always converges to the stationary point (0.98, 0.000, 0.000, 0.019).

This demonstrates that in the unconstrained case for the values of $\alpha < 1$ even not so close to one, a very significant portion of the mass is concentrated on the optimal node!

Relations to MABs

With linear topology and the rewards $\mu = (2, \frac{1}{4}, \frac{1}{2}, 1)$, let us make an important comparison with the multiarmed bandit literature.

The ϵ -greedy policy has a stationary distribution that is seen to concentrate equally on items 1, 4 as $\epsilon \downarrow 0$. In particular, it is a suboptimal distribution.

Of course, in the fully connected case the $\varepsilon(n)$ -greedy policy with $\varepsilon(n)=\frac{1}{n}$ converges to the optimal, as shown in Theorem 3 of (P. Auer *et.al.*, 2002). Thus, a standard bandit algorithm can fail in the graph-constrained framework.

New book (2022)

Table of Contents:

- . Introduction
- 2. Random graph models
- 8. Network centrality indices
- L. Community detection in networks
- 5. Graph-based semi-supervised learning
- 6. Community detection in temporal networks
- 7. Sampling in networks

Thank you!

Any questions?

