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Motivation



Model

There are m items to choose.

The reward in our model:(
µ̃i ×#{item i purchases}

#{total purchases}

)α
, µ̃i = µi + ζi , i ∈ [m],

was inspired by

Shah, V., Blanchet, J., & Johari, R.
Bandit learning with positive externalities. NeurIPS 2018.

This positive α-homogeneous reward captures ‘positive
reinforcement’ (aka ‘herding behaviour’ or ‘increasing returns’)
can be either concave or convex utility function.



Model

Agents arrive one at a time. And let

ξ(n) = i if the n-th agent picks object i ,

xi(n) :=
#{item i purchases}

n
, n ≥ 1

is the fraction of agents who picked i till time n.

xi(n + 1) = xi(n) +
1

n + 1
(I{ξ(n + 1) = i} − xi(n)) , (1)

with xi(0) = 1
m
∀i .

This can be viewed as a stochastic approximation iteration.



Model

Graphical constraints: We assume that the choice in the
(n + 1)-st time slot is constrained by the choice made in the
n-th slot.

E.g., given the present choice, only some selected ‘nearby’ or
‘related’ choices are recommended. (Of course, the complete
graph is a particular case.)

We consider an undirected graph G = (V ,E ) where V ,E are
resp., its node and edge sets, with |V | = m; and assume that
G is irreducible with self-loops.



Model

Selection Policy: The agents choose items according to

P(ξ(n + 1) = j |Fn) = (1− ε(n))p̃αξ(n)j(x(n)) + ε(n)χj(ξ(n)).
(2)

Here:

p̃αij (x) := I
{
j ∈ N (i)

} f̂ α,nj (x)∑
l∈N (i) f̂

α,n
l (x)

, (3)

for f̂ α,ni (x) := (µ̂i(n)xi(n))α, where

µ̂i(n) :=

∑n
k=0 I{ξ(k) = i}µ̃i(k)∑n

k=0 I{ξ(k) = i}
is the empirical estimate of µi at time n recursively computed
by

µ̂i(n + 1) =
(

1− 1

Si(n + 1)

)
µ̂i(n) +

µ̃i(n + 1)

Si(n + 1)
,

if ξ(n + 1) = i and remains the same otherwise.



Convergence analysis

We first note that µ̂i(n)→ µi a.s. ∀i .

Thus a.s., limn↑∞ f̂ α,ni (x) = f αi (x) := (µixi)
α and

lim
n↑∞

p̃αij (x) = pαij (x) := I
{
j ∈ N (i)

} f αj (x)∑
l∈N (i) f

α
l (x)

.

As α ↓ 0, the process approaches a standard random walk on
the graph that picks a neighbor with equal probability.

As α ↑ ∞, the process at i will (asymptotically) pick the
j ∈ N (i) for which µjxj = maxk∈N (i) µkxk , uniformly.
I.e., the process will tend to select a neighbour item greedily.



Convergence analysis

We first analyze the convergence for fixed α by the standard
stochastic approximation techniques based on limiting ODE.

Let ϕαi (x) := f αi (x)
∑

j∈N (i) f
α
j (x)/xi and consider the ODE

ẋi(t) =
xi(t)ϕαi (x(t))∑
k xk(t)ϕαk (x(t))

− xi(t). (4)

This is also the ODE limit for Vertex Reinforced Random Walk
introduced by Pemantle and analyzed further by Benaim.



Convergence analysis

Note that every equilibrium of (4) satisfies the fixed point
equation

π(i) = hi(π) :=
f αi (π)

∑
j∈N (i) f

α
j (π)∑

k f
α
k (π)

∑
`∈N (k) f

α
` (π)

, ∀i ∈ [m]. (5)

There can be more than one equilibrium point.



Convergence analysis

Further note that ODE (4) has the same trajectories and the
same asymptotic behavior as

żi(t) = zi(t)

(
ϕαi (z(t))−

∑
j

zj(t)ϕαj (z(t))

)
, (6)

i.e., z(t) = x(τ(t)) for some t ∈ [0,∞) 7→ τ(t) ∈ [0,∞)
which is strictly increasing and satisfies t ↑ ∞ ⇐⇒ τ(t) ↑ ∞.

Now we recognize that ODE (6) is the replicator dynamics.



Convergence analysis

Let A := [[aij ]]i ,j∈V be the (symmetric) adjacency matrix of G .
Then, for x = [x1, · · · , xm] ∈ Sm,

ϕαi (x) =
∂

∂xi
Ψα(x) for Ψα(x) :=

1

2α

∑
i ,j

aij f
α
i (x)f αj (x).

Thus (6) corresponds to the replicator dynamics for a
potential game with potential −Ψα.

We make the following technical, generically true, assumption:
The equilibrium points (5) are isolated and hyperbolic, i.e., the
Jacobian matrix of h at these points does not have eigenvalues
on the imaginary axis.



Convergence analysis

Theorem
For each α > 0, the local maxima of Ψα : Sm 7→ R are stable
equilibria of (4) and the iterates of (1) converge to the set
thereof, almost surely. In particular, the probability of
convergence of {x(n)} in (1) to any local maximum of Ψα in
Sm is strictly positive.



Convergence analysis (annealed dynamics)

Taking inspiration from ‘simulated annealing’, let us now
slowly increase α or equivalently slowly decrease the
‘temperature’ T (n) = 1/α(n) as follows:

T (n + 1) = (1− b(n))T (n), n ≥ 0, (7)

where 1 > b(n) ↓ 0 are stepsizes satisfying∑
n

b(n) =∞, nb(n)
n↑∞→ 0, b(n) = o(c(n)). (8)

The second condition implies
∑

n b(n)2 <∞.



Convergence analysis (annealed dynamics)

A behavioral interpretation is that the agents exhibit a herd
behavior, weighing in public opinion more and more with time.

Let
D := {i ∈ V : µi = max

j
µj}.

Theorem∑
i∈D xi(n)→ 1 a.s.

The proof is based on stochastic approximation technique with
multiple time scales.



The case of complete graph

In the case of complete graph (no graphical constraints),

Ψα(x) =

(∑
i

f αi (x)

)2

,

is convex for α ≥ 1. Nice observation...

However, for α ∈ (0, 1), the problem is equivalent to max∑
i f

α
i (x), which is strictly concave and we can say more.



The case of complete graph

For α ∈ (0, 1), using the Lagrange multiplier technique, we
can even obtain an explicit expression for the unique stationary
point:

xi(∞) =
µ
α/(1−α)
i∑m

k=1 µ
α/(1−α)
k

. (9)

From (9), as α→ 1, the frequencies xi(∞) start to
concentrate on D.



Numerical examples

Let us illustrate the importance of annealing for convergence
of x(n) to D.

Consider a graph composed of two cliques (2 and 8 nodes)
connected through a single edge.

We set µi = 1 for i ∈ clique-1 and µi = 0.5 for i ∈ clique-2.

Cooling schedule:

α(n + 1) = α(n)

(
1− 1

n log n

)−1
Trembling hand parameter:

ε(n) =
1

log(n + 1)



Numerical examples

Some points to note:

I If we initialize the walk in clique-2 and do not increase
α→∞, then the relative frequencies converge to non-zero
values for nodes in clique-2. (We have set α = 10.)

I If we initialize the walk in clique-2 and do increase α→∞,
then the chain moves to clique-1 and stays there.



Numerical examples

(a) Initialize in clique-2, α fixed. (b) Initialize in clique-2, α→∞.

Figure: Fraction of Total Visits, x(n) Vs. Iteration Count for the
two clique experiment



Numerical examples

For the unconstrained case, we have tried µ = (2, 1
4
, 1
2
, 1) with

the fixed α = 0.85 < 1.

The dynamics always converges to the stationary point
(0.98, 0.000, 0.000, 0.019).

This demonstrates that in the unconstrained case for the
values of α < 1 even not so close to one, a very significant
portion of the mass is concentrated on the optimal node!



Relations to MABs

With linear topology and the rewards µ = (2, 1
4
, 1
2
, 1), let us

make an important comparison with the multiarmed bandit
literature.

The ε-greedy policy has a stationary distribution that is seen
to concentrate equally on items 1, 4 as ε ↓ 0. In particular, it is
a suboptimal distribution.

Of course, in the fully connected case the ε(n)-greedy policy
with ε(n) = 1

n
converges to the optimal, as shown in Theorem

3 of (P. Auer et.al., 2002). Thus, a standard bandit algorithm
can fail in the graph-constrained framework.



New book (2022)

Table of Contents:

1. Introduction

2. Random graph models

3. Network centrality indices

4. Community detection in networks

5. Graph-based semi-supervised learning

6. Community detection in temporal networks

7. Sampling in networks



Thank you!

Any questions?


