PhD defense of Nejat Arınık – 29 June 2021

29 June 2021

I will defend my thesis titled ‘Multiplicity in the Partitioning of Signed Graphs’ on Tuesday, June 29th at 2 p.m. The presentation will be in French and will take place in a hybrid mode: at the Blaise Pascal amphitheater of the CERI and via video conference. The video link is: https://pod.univ-avignon.fr/live/these2/ You are all cordially invited. The jury will consist of: You are also invited to the thesis reception following the defense. Abstract: The partitioning of signed graphs is an important task from an application standpoint, as finding a balanced partition helps in understanding the system modeled by the signed graph. However, the standard approach in the literature aims to find a single partition, as if it adequately characterizes the system under study. Yet, multiple partitions may be needed to construct a fairer image of the studied system. Although this notion of multiplicity is crucial from the end-users’ perspective, it has been scarcely addressed in the literature. In this thesis, we aim to relax the assumption of a unique partition and search for multiple partitions, each within two distinct situations. The first situation concerns signed multiplex graphs. Such a graph consists of several separate graphs, referred to as layers, each Plus d'infos

HDR defense of Vincent Labatut – 16 June 2021

16 June 2021

I will defend my HDR entitled ‘Combining Heterogeneous Information: Contributions to the Extraction and Analysis of Feature-Rich Complex Networks’ on Wednesday, June 16, 2021, at 9 a.m. The presentation will be in English and will take place via video conference at the link https://pod.univ-avignon.fr/live/colloque/ You are all cordially invited to attend. Jury: Abstract: The concept of Complex Network is generally used in the literature to refer to a graph representing a real-world complex system. This confers such graphs so-called non-trivial topological properties that distinguish them from regular and random graphs. Among them, the most widely known are small-worldness and scale-freeness, whose study marked the beginning of a new research domain now called Network Science, and aiming at studying complex networks. It is a multidisciplinary field that relies largely on a number of pre-existing domains, in particular graph theory, quantitative sociology, computer science, operations research, statistical physics, and of course complex systems. Network Science is mainly a data science, as its starting point is the modeling of real-world systems. As such, its emergence is due not only to the convergence of interdisciplinary efforts, but also to the availability of the resources required to build and study large and/or numerous complex networks: Plus d'infos